
Computer Writing and Research Lab

White Paper Series: #040505-4

MOO Bots
Olin Bjork

objork@mail.utexas.edu
University of Texas at Austin

5 May 2004

Keywords: bots, MOO, object-oriented programming, regular expressions

Abstract: This paper explores educational ways to program and use bots in a MOO environment.

How MOOs differ from IM or IRC

Many CWRL instructors use our MOO (Multi-user domain Object
Oriented) exclusively as a means of synchronous communication.
When used in this way, the MOO is little more than a bulky alterna-
tive to Instant Messaging (IM) or Internet Relay Chat (IRC) applica-
tions. The new generation of IM software, such as Apple’s iChat AV
or Cerulean Studios’ Trillian, may well be superior options for an in-
structor whose main purpose is to hold networked group discussions
in real time and keep transcripts of those discussions. Interchange, a
Daedelus Integrated Writing Environment (DIWE) program that the
lab unfortunately can no longer support, was almost certainly supe-
rior. Interchange allowed an instructor to move between different
group discussions and quickly get up to speed by skimming through
the back histories (i.e., running logs) of those discussions, whereas
in the virtual reality (VR) of a MOO, an instructor manipulates a
“player” and can only read a record of those comments and actions
he/she/it has been present to “hear” or “see”—the instructor will
have to “play the tape” to find out the rest. Unlike IM or IRC, the
primary function of a MOO is to model a world or worlds.

As text and/or image based virtual worlds, MOOs allow users to
take on personalities and identities different from their real life (RL)
personas. While many other chat environments enable this practice
technically and may even encourage it socially, MOOs are role-playing
environments by definition. MOO spaces are designed for explora-
tion and discovery, not merely as venues for group conversation.

What makes MOOs truly unique, however, is that they combine

many of the features of an IM or IRC application (and often of a
Web site) with an object-oriented programming (OOP) environ-
ment. Users can edit the players they own, and users whose players
are builders can create new objects from existing object types, called
classes. Users whose players are programmers, meanwhile, can create
new classes and edit old ones.

What are Bots?

One of the most intriguing MOO classes is the bot class. A bot,
in info-tech parlance, is a non-mechanical, intelligent user agent or
software robot. The most common form of bot is the Web robot,
or spider, a bot that indexes information from Web pages for search
engines or spammers. Next most common is the chatterbot, or
natural language processing program, “a bot capable of carrying on a
conversation with a human.”1 A MOO bot is a species of chatterbot
described by Cynthia Haynes and Jan Rune Holmevik as

An object designed to interact in real time with MOO users in
its vicinity. The bot (short for robot) consists of a series of
programs that interpret and act on conversations and sentence
patterns through random responses or question responses, all of
which are user programmable. The most common bot in enCore
based MOOs was designed by Ken Schweller of CollegeTown
MOO, but a number of other types of bots can also be encoun-
tered in MOOs, including bots that can “walk” from location to
location, and bots that can “learn” and “remember” from their
interactions with users. Bots require more advanced building
and programming skills, but can be used creatively for tutorials,
dramas, or presentation of research, among other things.2

MOO bots, like players, live in the MOO. But when a user is not
logged in, his or her player is asleep. A bot is never asleep or awake,
it is either active or inactive. And an active bot, unlike a player owned
by a user who has forgotten to disconnect from the MOO, is never
idle. In fact, an active bot can be a quite an annoyance, because bots
respond to nearly everything they hear. Creating a bot that is more
interesting than irritating is quite a challenge, but the effort alone can
be a rewarding experience for students and teachers.

Bots, players, and the Turing test

In Allan Turing’s famous 1950 article, “Computing Machinery and
Intelligence,” he describes an experiment called the “imitation game”
in which an interrogator (C) tries to determine the sex of two unseen

2

1 Leonard, Andrew. Bots: The Origin of
New Species. San Francisco: HardWired,
1997. 190-95.

2 Holmevik, Jan Rune and Cynthia
Haynes. MOOniversity: A Student’s Guide
to Online Learning Environments. Boston:
Allyn and Bacon, 2000. 124.

persons, a man (A) and a woman (B), based on printed messages. A’s
object is to deceive C by passing himself or herself off as a person
of the opposite sex. B wants C to guess correctly. Turing then pro-
poses a version of this experiment in which position A is taken over
by a machine. Turing believes that a machine can be programmed
to perform just as well as a human in that the interrogator will be no
more successful in distinguishing between person and machine than
he or she was in distinguishing between the sexes. If a machine can
“fool” the interrogator, argues Turing, it is intelligent.3 This spin
on the imitation game has come to be called the “Turing Test,” and
has been a focus of many discussions in Artificial Intelligence (AI),
philosophy, and cognitive science for over 50 years. To this day, no
chatterbot has ever passed a rigorous Turing Test.

In general, MOOs are not the best environments for such games
or tests, as user’s real names are not protected. For example, the
CWRL implements Xpress, enCore’s Web interface, for our (“Silver
Sea”) MOO. When users click on a player’s icon, not only will they
see a description and/or image of that player, but also the real name
and e-mail address of the user who owns that player. Assuming that
this user submitted an authentic name (a recommended practice), he
or she has just been fingered! MOOs based on enCore also allow the
command @whois “player name,” so even if a player is communicat-
ing from a locked room, users can still identify the user behind the
player (and quite possibly the user’s gender as well).

How then can users distinguish between a player and a well pro-
grammed bot? There are myriad ways: if they click on the bot’s icon,
they will see no user info, only a description. If they use an @whois
command, the system will inform them that the bot’s name cannot
be found in the player database. If they examine the bot, they will
see a list of bot-specific commands. Thus, no bot can hope to fool
a determined user. And even if the instructor outlaws any means of
distinction other than direct communication, a user might still be able
to distinguish between a bot and a character imitating a bot because
bots tend to respond faster than most users can type.

The point is, enCore MOOs are about education, not decep-
tion. Students need not be in disguise; they need only be in character.
MOOs are perfect for role-playing and devil’s advocate exercises
because in many cases students will not be able to assume that opin-
ions expressed in VR on a RL issue are the same as their classmates’
RL opinions on that issue. Bots add yet another layer between user
and object; whose views are they programmed to express? It is often
preferable, therefore, for students to adopt characters that are not
mere simulacra of themselves in RL, but instead represent subject
positions different from the ones they commonly find themselves in.

MOO BOTS 3

3 Turing, Allan. “Computing Machinery
and Intelligence.” Mind 59 (1950). <http:
//www.abelard.org/turpap/turpap.html>

http://www.abelard.org/turpap/turpap.htm
http://www.abelard.org/turpap/turpap.htm

Programming Bots

A bot programming assignment will not only teach students about
AI and OOP, it will help them think about language and rhetoric in a
new way. But bot programming takes a fair amount of time to learn,
so some instructors may be better served to create bots themselves
and/or make bot programming an option for students who are par-
ticularly intrigued by the MOO or bots.

A generic bot can be created through the Xpress Object Editor,
where it is listed under educational objects, or by typing the following
(with a different bot name): ‘@create $bot named Tony Blair’. The
default description of a bot is the following:

You see a Turing Robot designed to interact in vigorous ‘Eliza-
like’ conversation with other folks in its vicinity. It has key words,
sentence patterns, random responses, and question responses - all
user programmable. It has some ability to recognize where it is
and to whom it is talking. Type @exam botname to see all the
available commands. For detailed assistance in programming this
bot type ‘help botname’. For a discussion of the issues involved
in testing machine intelligence see Turing’s paper ‘Computing
Machinery and Intelligence’. To start up the bot, drop it, activate
it, and say ‘hi’. Please report bugs to ken/cdr@CollegeTown.

‘Eliza’ is a program developed in 1965-66 by Joseph Weizenbaum
of MIT and named after Eliza Doolittle from Shaw’s Pygmalion. Eliza
responds to statements on any topic by asking questions in the man-
ner of a Rogerian psychotherapist.4 The faux dialogue that results
can be fairly convincing (see http://www-ai.ijs.si/eliza/eliza.html).

When we enter ‘help botname,’ we see that there are three main
ways to program a bot:

1. ADDING A WORD FOR YOUR BOT TO RESPOND TO:
To see what words your bot already responds to, type ‘seewords
botname’. To teach your bot to respond to ‘donut’ with either
‘I like donuts too.’ or ‘Donuts are very tasty!’ just type ‘addword
botname’ and enter the keyword ‘donut’. Then enter the appro-
priate responses a line at a time. End with a single period on a
line by itself.

Programming bots with keywords is an easy and effective way
to make them remark on specific issues of interest. However, this
method is insufficient to simulate an actual dialogue because it will
soon become clear to the interlocutor that the bot is simply respond-
ing to keywords and is not actually processing any other words.

4

4 Weizenbaum, Joseph. “ELIZA—A
Computer Program For the Study of
Natural Language Communication
Between Man and Machine.” Commu-
nications of the ACM 9.1 (1966): 36-45.
<http://i5.nyu.edu/~mm64/x52.9265/
january1966.html>

http://www-ai.ijs.si/eliza/eliza.html
http://i5.nyu.edu/~mm64/x52.9265/january1966.html
http://i5.nyu.edu/~mm64/x52.9265/january1966.html

2. ADDING A PATTERN FOR YOUR BOT TO RESPOND
TO:
Suppose you wished your bot to hear something like
MY DONUT ISN’T VERY TASTY
and respond with
WHAT’S SO GREAT ABOUT A TASTY DONUT?
To do this you must teach your bot to respond to the pattern
MY a ISN’T VERY b.
To understand what patterns look like, type ‘seepat botname’ and
study the examples. For additional assistance on understanding
the syntax of patterns type ‘help regular’. When you think you are
ready to add a pattern type ‘@addpat botname’ and enter the fol-
lowing line when asked to do so:
my %(%w*%) isn’t very %(.*%)
Then type in the response form:
What’s so great about a %2 %1?
Add as many response forms as you wish on separate lines. End
with a period on a single line.

Programming bots to find particular syntactical patterns and
respond in appropriate patterns requires learning a few regular
expressions: “a regular expression, or regex for short, is a special
text string for describing a search pattern. You can think of regular
expressions as wildcards on steroids. You are probably familiar with
wildcard notations such as *.txt to find all text files in a file manager.
The regex equivalent is .*\.txt.”5 To find out how to use the regexs
implemented by the MOO programming language, type ‘help regular-
expressions’. Regexs are also useful in other contexts, such as search-
ing electronic text or code.

3. ADDING RANDOM RESPONSES:
These responses are triggered whenever your bot can’t find a
keyword, a pattern, or a question. To see the responses already
programmed type: ‘seeresponses botname’. To add a new random
response type: ‘addrandom botname’ and enter a new response.

4. ADDING A RANDOM RESPONSE TO A QUESTION
When your bot senses a question is being asked it responds with
a random ‘answer’. To see the random question responses already
programmed into your bot type ‘seequestionresponses botname’.
To add a new response type ‘addquestionresponse botname’.

Random responses will prevent your bot from going mute, but
they can also drive interlocutors to distraction. So it is generally ad-
visable to program random responses to questions only.

MOO BOTS 5

5 Goyvaerts, Jan. Regular-Expressions.info
<http://www.regular-expressions.info/>.

http://www.regular-expressions.info/

In addition to the four built-in methods discussed above, there
are many other ways to program a bot. Bots can be programmed to
travel around the MOO, open other objects, never repeat themselves,
etc. For more information, see the MOO programmer’s manual.6

Pedagogical Applications

AI professionals are still struggling to design believable user agents
that behave in effective and entertaining ways, so students and teach-
ers who venture into bot programming should not expect to achieve
such goals with the limited resources and time available to them.
However, they should discover, as AI philosophers already have, that
bot programming leads to interesting discussions about the nature of
cognition and discourse.

One excellent pedagogical context for bots is the simulation as-
signment. Bots can enliven virtual spaces and rhetorical situations.
For example, students assigned to do a MOO project on the Spanish
Inquisition might choose to create a virtual Seville circa 1492. After
building the cathedral and tribunal chamber, they might then decide
to create a Tomás de Torquemada bot to preside there. Their chal-
lenge would be to program this grand inquisitor bot to ask players
realistic questions, respond to their answers convincingly, and make
fitting accusations. Players could then take turns being interrogated
by this bot, and other players could serve as judges. Students could
even contrive alternative historical events, like Christopher Columbus
being interrogated instead of celebrated after confirming that the
world is round.

Another context for bots is the group debate or discussion.
Instructors should place bots in rooms where these meetings are to
be held. After the players in each group have all arrived, they will
activate the bots to serve as moderators. The bots will then provide
a prompt to begin debate or discussion, and when certain keywords
are mentioned by the participants, the bots will respond with new
prompts. Since an instructor cannot moderate every group at once,
using bots as proxies can be an excellent way to keep groups on track
or veer them into new territory.

Bots are perhaps best suited to be guides in virtual museums or
archives. A guide bot can be programmed to be a loquacious expert
on a particular room or exhibit within a MOO. With more advanced
programming, a guide bot can become a traveling companion for
players, but this option often requires a type of annotated environ-
ment more suited to a Multi User Domain (MUD) than a MOO.
MUDs tend to have relatively few themes and programmers, there-
fore rooms can more readily be designed to send appropriate infor-
mation to the bots who enter them.

6

6 <ftp://ftp.lambda.moo.mud.org/pub/
MOO/ProgrammersManual.html>

Bibliography

Goyvaerts, Jan. Regular Expressions.info. <http://www.regular-
expressions.info/>.

Holmevik, Jan Rune and Cynthia Haynes. MOOniversity: A Student’s
Guide to Online Learning Environments. Boston: Allyn and Bacon,
2000.

Leonard, Andrew. Bots: The Origin of New Species. San Francisco: Hard-
Wired, 1997.

Turing, Allan. “Computing Machinery and Intelligence.” Mind 59
(1950).

Weizenbaum, Joseph. “ELIZA—A Computer Program For the Study
of Natural Language Communication Between Man and Ma-
chine.” Communications of the ACM 9.1 (1966): 36-45.

MOO BOTS 7

http://www.regular-expressions.info/
http://www.regular-expressions.info/

