
Agents Help Students in ProgrammingLand
Curt Hill

Department of Mathematics
Valley City State University

Valley City, ND, USA
701 845-7103

Curt.Hill@vcsu.edu

Vijayakumar
Shanmugasundaram

Concordia College
Moorhead, MN, USA

218 299-3343

shanmuga@cord.edu

Martina Miteva
North Dakota State University

Fargo, ND, USA
701 388 - 8544

Martina.Miteva@ndsu.edu

ABSTRACT
ProgrammingLand is an online system for delivering content to
introductory computer science courses as a substitute for a
conventional textbook. Because the system has a large number of
exhibits, sometimes students were not finding the material
needed. The system was recently enhanced with several agents to
direct students to pertinent locations. This paper discusses the
capabilities and techniques of these agents.

Preliminary data from the use of ProgrammingLand in two
different introductory programming classes is discussed. This data
suggests that the agents are successful in aiding students,
especially those who are struggling.

Categories and Subject Descriptors

1.1 K.3.2 [Computers and Education]: Computer and
Information Science Education – computer science education.

General Terms
Design, Experimentation.

Keywords
CS educational research, online instruction, blended education,
distance education.

2. INTRODUCTION
ProgrammingLand [3] is an online instructional system for
introductory computer science courses. It contains content
material and thus substitutes for a textbook. The system provides
testing, communication and administrative features [2] so it also
substitutes for a learning management system. The content is
organized in terms of lessons, which allow students to process at
their own rate and in the order they prefer, making it learner-
centered. Lessons are hierarchical and may be contained one
within another. The completion of certain lessons prompts an
agent to deliver an assignment to the student. A lesson may
require a variety of experiences in order to be completed. These
may include the simple browsing of textbook-like material,
interaction with various types of exercises within the system, and
completion of prerequisite or subordinate lessons.

ProgrammingLand is based upon MOO software [1]; thus it is
organized into rooms (also known as exhibits) and exits that
connect the exhibits. The paradigm is that of a museum where
students browse through the exhibits, reading the content material
and interacting with educational objects. The original core of the
museum and the web browser client is distributed by enCore[4].
A display of the client is shown in Figure 1.

Figure 1. A display of an exhibit

Much of the original motivation for ProgrammingLand was online
and distance education. The student would use the MOO like a
textbook, but it would give assignments and ease the
administrative load of the distance instructor. It has been used in
this mode, but everything that ProgrammingLand provides for
distance education, it may also contribute to the normal class
taught in a classroom. Thus there is the blended approach of
classroom instruction with a significant online support. The
average college student does better with both than with only one
of the two.

Recent development in ProgrammingLand has progressed on
three fronts: the increase of new content material so that more
classes may use the system, the implementation of features
normally found in a Learning Management System and the
implementation of agents that make students more effective in
their use of ProgrammingLand. This paper deals with the latter.

The ProgrammingLand MOOseum is one of a series of projects
by the World Wide Web Instructonal Committee[5,6].

3. PREVIOUS AGENTS
The oldest agents that existed were of the simplest form. Each
time a student entered a lesson room, the student’s
accomplishments were checked. If the student had completed the
requirements and this was a lesson that had an external

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE'06, June 26–28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006...$5.00.

assignment, then an agent, known as a roving goalie, was
dispatched to visit the student. The agent would enter the room,
speak to the student, post the assignment on the student’s object
for future reference and leave. Although the agent was portrayed
as a person, the student did not interact with the roving goalie in a
more meaningful way that one does with an answering machine.

The types of assignments that a roving goalie gives to a student
are typically programming assignments that need to be done
outside of the MOO. In an introductory programming class, that is
the most frequent type of assignment. Any assignment that can be
described in text, some of which may refer to an outside web
page, could be delivered by a roving goalie. There are several that
give assignments that require the filling in of a worksheet or other
possible assignment, but the bulk are programming-style
assignments.

Another important aspect of the roving goalie is its ability to give
one of a list of equivalent assignments. The roving goalie merely
indexes through a list of assignments. If there are more students
than unique assignments, it starts over in the list. This greatly
discourages the plagiarism that sometimes occurs. The
assignments are not given out in any predicatable order, but rather
when the student completes the lesson. The program grader may
reference which assignment was received for each student and
verify that the student turned in the correct solution and not a
friend’s correct solution.

The roving goalies, however, were and continue to be important
to the usefulness of the system. Most instructors have some
concern whether students are reading the textbook or not. This
may be alleviated in ProgrammingLand by rewarding those
students who complete lessons in the system. Lesson completion
may be the only mechanism in a course to receive assignments or
the students may receive points towards their grade by completing
lessons. There are other means as well to monitor how the
student is progressing through the material.

4. INTERACTIVE AGENTS
The newer agents all deal with one of several perceived problems
that previous students experienced with the system. There are
now three new interactive agents that help students. The first
gives quizzes to students that could satisfy a lesson without all of
the reading; the second searches out lost students; and the third
attempts to assist students who are making no progress on their
lesson. Each of these will be described in some detail presently.

5. QUIZ AGENT
The plight of the over-experienced student is the problem that the
Quiz agent attempts to solve. The introductory class has quite a
variation in the material and the level of incoming students. Some
of these students have a strong background but may need this
class for the programming language that is taught, rather than
some of the issues, such as background information or
programming skills. The idea of quiz is to allow a more advanced
student to take a quiz instead of plowing through all the
requirements (so that boredom does not set in).

When a student leaves a lesson room, the system compares what
he or she have done with the requirements of the lesson. If the
only thing lacking for completion of the lesson is visiting one or
more rooms, then the Quiz agent is summoned to talk to the

student. Like any agent, it enters the room and speaks to the
student. The student is given the offer to take a quiz to prove
mastery. If the student accepts, the agent transports the student to
a specially designed quiz room. The room accepts a command to
give a five question, multiple choice quiz. If the student answers
four or more questions correctly, he or she is given credit for the
entire lesson. A student may only take the quiz twice and is no
longer offered the quiz by the agent after two failures.

The quiz itself is randomly generated. Each exhibit that the
student has not visited has a store of one or more questions on the
content material of that room. Each such question has a collection
of one or more right answers and four or more wrong answers.
The quiz generator randomly reduces the pool of questions to the
needed five and randomly orders the answers. It then gives the
questions, accepts the answers and scores the quiz. When the
student completes the quiz, he or she may exit the quiz room.

6. AGENT INFRASTRUCTURE
ProgrammingLand is a MOO and like all MOOs has an object
oriented structure. All rooms, exits and players are objects that
may have their own properties, methods and events. (Methods are
called verbs in a MOO.) There are several objects that need to be
considered before a discussion of the lost and aimless agents
themselves.
The normal room in ProgrammingLand is called a lecture room.
Every lecture room has some content material that the student
should read; the system records that the student visited the room
on the student’s object. Currently there are approximately 2500
such rooms in the MOO, each of which contains about one to five
paragraphs of text. Two important descendents of the lecture
room are the monitor room and its derivative, the lesson room.
The lesson room is typically the head and only way into a cluster
of related rooms that deal with a single topic, either narrow or
broad. A student entering a lesson room is checked for completion
of the lesson. This is the mechanism that sends a roving goalie, if
the lesson has been completed by that individual. A student
exiting a lesson room for a room outside of the lesson triggers a
check of completion of all of the requirements except for one or
more exhibits. If the student has not failed the quiz more than
once, then the quiz agent is summoned by this event. There are
approximately one hundred lesson rooms in ProgrammingLand.
Some of the wings of the MOO have not yet been organized into
lessons, so the average number of lecture rooms managed by a
lesson room is less than the 25:1 implied by the previous
numbers.
The first time a student enters a lesson room, the room will
display the requirements of the lesson. At any subsequent visit,
the student may issue a command to display these requirements
again. However, these may only be shown in the lesson room.
Each display of a lesson’s requirements also shows which have
been completed.
The monitor room also does event processing. When a student
enters a monitor room, it calls two verbs on the agent object,
which will be discussed later. The two verbs check if the student
is lost or if the student is aimless. Since lesson is a descendent of
monitor room, it does the same checks. There are only about ten
monitor rooms in ProgrammingLand. The main entryways into
the various wings of the MOO are usually monitor rooms. These

include the C++ foyer, the Java foyer and the Background Topic
foyer.
The agent object is the ancestor of both the lost agent and the
aimless agent. It contains a number of common routines of both of
these. The standard agent practice of these two is similar. The
monitor room checks whether the student is lost or aimless by
calling verbs on the respective agents. If the student is both lost
and aimless, then only lost is called. Next, the agent to be
summoned is activated. This involves queuing the request if the
agent is busy. When the agent becomes free, it enters the current
room where the student is, which may not be one of the monitor
rooms because of time lags. The agent then asks if the student
needs help and moves him or her to an appropriate room if an
affirmative answer is received. The most important difference
between the two agents is how to determine if a student is lost or
aimless and; involve the requirements of the course and lesson.
Each student is enrolled in one or more courses, which are
instances of a course object. A course object contains a list of
lessons that need to be completed. This is not necessarily an
exhaustive list but only those that the course specifically names.
Each of those lessons may cite others that serve as prerequisites to
this lesson or subordinate to this lesson. Each lesson, whether in
the course object or not, refers to a requirements object which
lists the things that must be completed in order to satisfy that
lesson’s requirements. Just as two instructors may require
different readings from the same textbook, the requirements for
one course may differ from another course with regards to the
same lesson.
The final part of the infrastructure is the student object. This is the
object that records which rooms have been visited, which lessons
have been completed, and which interactive objects have been
used, as well as to which course or courses the student belongs.
The lost and aimless checking mechanisms are both based upon
the comparison between the completed activities of the student
and required activities of the course and lesson.

7. LOST AGENT
A characteristic of many MOOs is a spatial orientation. Exits are
labeled with directions such as North, South, Up and Down.
ProgrammingLand does not use this particular paradigm, so its
exits are labeled by content that appears in the destination exhibit.
The unfortunate result is that sometime students do not know
where they are or how to get to where they should be. Sometimes,
students would work on or complete lessons that were not
relevant to their course. This resulted in very low correlation
between exhibits visited and class performance. The linear nature
of textbook, along with an index and table of contents prevents
this in the use of that media. ProgrammingLand had two
mechanisms for preventing this. By convention, each exhibit has a
single exit that should take the student closer to the entryway.
This exit has an icon that is of a different color, so that a student
may always find a way back to a known location. There is a also a
set of web pages on the same server called the lesson map []. Each
lesson is shown with a description of the shortest way to get to the
lesson, the names of contained rooms and subordinate lessons.
Despite these two, students were still wandering into areas
irrelevant to the course or too advanced for their current status.
Some wandering is desirable – ProgrammingLand is intended to
be learner centered – but when the student cannot engage in

constructive browsing of the content, a problem arises. The lost
agent is the active solution to supplement the passive solutions
just described.
The most important function of the lost agent is the is_lost
function – the method of determining if the lost agent should
intervene. This function must use a variety of information to
determine if the student would benefit from a visit. It receives the
monitor room that has been visited and the student object.
The is_lost function must first determine if the room entered is a
safe room. A safe room is any room that a student might go
through that should not arouse attention. For example, when a
student logs in to the MOO, the starting point is the main
entryway. For a C++ student, the normal path is to enter the C++
foyer and then further into the lesson room of choice. A C++
student who that enters the Java foyer is curious or lost, but the
C++ foyer is a safe room. The safe room list is attached to the
course object and the lost agent obtains access to it from the
student object. Therefore, if the student just entered a safe room,
the function determines him or her not to be lost.
The course object is also needed to find the lessons and their
requirements. The course contains an ordered list of lessons that
the students should complete. This set of lessons may be complete
before the beginning of the class or the instructor may only add
lessons after the class has progressed to a previous lesson. In
either case the lesson that the student should be in is the first
lesson that is incomplete. The student object contains a list of
events, including completed lessons, so the is_lost function
compares that list with the list of lessons to determine where the
student should be working. If they are in a previous lesson that is
not considered a lost situation, but instead the presumption is that
they are reviewing material already seen. If the student is in the
next lesson, that is just one beyond where he or she should be that
is also allowed. However, anywhere beyond that point or in any
area not otherwise covered by the course, the student is
determined to be lost.
An affirmative return from is_lost prompts the system to dispatch
the agent to visit the student. There is only one lost agent and
possibly many lost students, so this request may be queued until
the agent is available. However, the time required to assist a
student is not very lengthy, so there is seldom more than one
student waiting processing.
Upon activation, the lost agent moves to the exhibit the student is
currently visiting. Since delays are possible, it does not have to be
a monitor room. It then mimics a person, mentioning that the
student appears to be lost and asking if assistance is desired. The
student will then reply to the question. An affirmative response
causes the agent to move itself and the student to an exhibit in the
lesson that is incomplete. In practice this could be any one of
many such exhibits. The lost agent then exits.
One of the goals of the agents is to avoid being annoying. A
student may be in an area that is not pertinent because of losing
the way or because of curiosity. The system would not be learner-
centered if it forced the student back to the lesson that the system
thinks is the appropriate one. Therefore, the question on help is
asked. If the student declines help at this point, this fact is
recorded on the student object. If the agent visits again after the
next pass through a monitor room, it would get annoying to
decline help again. Therefore, is_lost will not signal the revisiting
of a student that has declined help until the student has visited a

fixed number of other monitor rooms. This number is currently
set at ten, but may be tuned at a future time. Visiting ten monitor
rooms implies the visitation of many other lecture rooms. A
logoff from the MOO also clears the counter.

8. AIMLESS AGENT
A student, who is not making progress towards completing the
requirements of any lesson is considered aimless. This is a more
complicated problem than is seen with the lost agent. The lost
agent may examine the course and student and from that only
determine if the student is lost. The determination of aimlessness
requires all of these things, but must also consider the recent
actions of the student.
When a student starts working on several lessons simultaneously,
each of which may include lessons, keeping track of the
requirements and room locations becomes a challenge. The
aimless agent records lesson progress for each student and what
that student needs to do next. The purpose of the agent is to make
sure students are taking steps towards completing the lesson and
navigating through the MOO with a purpose in mind. The agent
detects potential aimless students, informs them what they need
to do to make progress with their lesson and helps students
navigate by transporting them to the next room they need to visit,
or interactive object that must be executed.
For each student who enters a new lesson, a progress object is
created for that lesson and appended to a list of progress objects
attached to the student object. Of course, the student is unaware of
the things happening under the surface. When this student
completes a lesson, the progress object for that lesson is removed
from this list. Thus, the list keeps track of all lessons on which the
student is currently working. The requirements list of a lesson
depends on the course the student is enrolled in, as well as on the
instructor of the course. Therefore, a progress object is created
only for lessons required for courses in which the student is
enrolled.
Progress for a student would be the visiting of a room or the
accomplishment of an event. An event would be the completion
of a lesson or a complete interaction with any of several objects.
A progress object is related to one particular lesson for one
particular student and has one room that could be suggested for
the next visit or one interactive object to execute. Either of these
could be empty, but not both. When the student completes the
lesson, the progress object for that lesson and student is discarded.
Every time the student enters a lesson room, the event and room
counts are updated. The MOO records every lecture room a
student visits as well as any events, so when a student enters a
lesson room, the progress object for that lesson is updated to
reflect any activity completed since the student’s last visit. The
aimless agent decides whether a student is making progress in the
current lesson by counting how many times counts of unvisited
rooms and incomplete events has remained the same.
The annoyance factor is considered for the aimless agent as well.
Like the lost agent, when a student declines help, this keeps the
aimless agent away for a number of visits. The aimless agent is
also more reluctant to visit the student than the lost agent, in
another sense. Any motion in an unrelated area brings the verdict
of lost, however one trip through an area without progress does
not summon the aimless agent. Instead it requires exceeding a
threshold of visits to the lesson room before summoning aimless

and this threshold is currently set to five. In those cases where
aimless and lost could both be activated, lost is summoned and
aimless is not.
Aimless also checks students at login by searching the student’s
progress list for the next needed event or room and comparing
them to the ones on his list. If they are the same, the student has
not made any progress. A count for the lesson is increased and
when it exceeds the threshold, the aimless agent is also activated.
The aimless agent provides advice based on the current location
of the student. If the student is considered aimless at login, and is
located in the Entryway outside any lesson, he or she is advised to
move to the first unvisited room or the first uncompleted
interactive object within the first lesson on the list. If the first
lesson on the list still requires completion of a lesson, then the
requirements of the lesson are searched for room or object. Thus,
the student is advised to make progress in the first lesson on the
list, or one of its subordinate lessons.
If, instead, the student is inside a lesson, then the current lesson’s
rooms and subordinate lessons are searched first and the advice of
the aimless agent will be to complete the next requirement from
the list of the current lesson.

9. AGENT EXPERIENCE
The fall semester of 2005 saw the first use of these agents by
students in a class. The authors were confident of the potential but
experienced numerous implementation problems. These
implementation problems, when they were manifested, did not
have a large impact on the student perception of
ProgrammingLand. The usual symptom was that the agent did not
appear. Since agents appear rather unpredictably from the student
perspective, their absence was not a problem. However, the
researchers lost quantitative data.
The subjects of this study were two introductory programming
classes at two different institutions; one used Java and the other
C++. Although both classes used ProgrammingLand as primary
means to deliver content with no other textbook, they each had
their own unique approach. In the class using C++,
ProgrammingLand used goalie-delivered assignments. Since the
student is unable to receive an assignment until completion of a
lesson, there is a pressure to use the system. The Java class did
not have that pressure, since it did use that technique to mandate
use of ProgrammingLand.
The students’ subjective views were mostly positive. The good
reports from students started rather quickly. There is no learning
curve for a college student using a textbook, but there is one for
ProgrammingLand and the lost and aimless agents seem to help
this problem. However, the responses were not all positive.
Students also found the agents to be annoying at times, so more
work needs to be done in this area.
The quantitative data is partial, due to the technical difficulties.
The logging for the lost agent was completely absent. The aimless
agent provided what appears to be reasonable data in September
and November and the following analysis is based on this partial
data.
The aimless agent made 53 visits to students that appeared to not
be making progress towards the goal. The bulk of these (41) were
in the C++ class, even though the Java class had more students.
This seems to be due to the pressure to complete lessons. When

the aimless agent appears, it offers to transport the student to a
location that may be more helpful. The students accepted the offer
more than 70 percent of the time for both groups. This does not
appear to decline significantly over time. This appears to be
significant, for if the help the agent provided was of little value,
the acceptance rate should seriously decline. The absence of such
a decline indicates that the students did find this a helpful service.
The aimless agent’s visit has a correlation of -0.489 with
students’ test performance in the tests in the C++ class. The
expectation is that the better students do not wander aimlessly, so
they receive fewer visits. The correlation between accepting an
offer to be transported to test performance is -0.636. This
indicates that the better students not only receive fewer visits, but
accept the offer less frequently. These are the type of results to be
desired. The better students will do well no matter what the
environment. The role of the agents is to help those who are
struggling and the data indicates that these are the students who
are being visited. There is no data to support or refute the thesis
that the weaker students’ scores are increased. However, without
any indication that an agent damages a student, the implication is
clear: the aimless agent is selectively visiting and transporting the
weaker students.

10. SUMMARY AND CONCLUSIONS
The roving goalie agents have been in place for several years and
have proven effective in their tasks. The list of equivalent
assignments approach has greatly reduced the grossest forms of
cheating, since the students’ programs do not have exactly the
same purpose. It then becomes routine for the program grader to
check that the student turned in the assignment that had been
given. They have also worked well from a system standpoint, for
some time.
The quiz system including the quiz agent and quiz room allows a
student to use prior knowledge and experience to finish a lesson
more quickly. There are several restrictions that limit the
generality of this approach. The student must have fulfilled all of
the requirements except visiting one or more lecture rooms. The
author of the lecture rooms must also have taken the time to
generate suitable questions. If the quiz cannot find at least four
questions, it will not offer the quiz and thus the lesson completion
cannot be accelerated. Typically there are not that many students
who are advanced enough in an area to take the quiz. Most
students who try this approach, do so just to avoid more work,
often failing the quiz. Even if they are lucky – it is a multiple
choice quiz – the educational purpose may not have been served.
The lost agent has addressed a long standing need in
ProgrammingLand. Historically, there is little correlation between
rooms visited and performance in the course, nor correlation
between rooms visited and lessons completed. Sometimes
students just wander around. It is the author’s expectation that if
only the good students wandered out of the appropriate area to
satisfy their curiosity then the previous correlations should have
been positive. Students sometimes just get lost. The lost detection
mechanism seems to work well, but there are some problems.
The aimless agent also fills a need stemming from similar student
problems. They wander around their lesson without making
progress. The availability of the lesson requirements makes it
possible for the aimless agent to give good advice as to the next
thing to do.

Student comments have been positive for both ProgrammingLand
and the agents therein. The agents tend to reduce the amount of
time needed to learn how to use the system. The most frequent
negative comment is on the agents arriving too frequently and
thus being a nuisance.
Although the quantitative data is at best incomplete due to
technical problems in the first semester of use, it does indicate
that the agents perform a valuable function in ProgrammingLand.
Despite the occasional annoyance, students continue to accept the
advice of the agents above the 70 percent level through the
duration of the course. The data also indicates that the agents are
more likely to assist the weaker students, thus leveling the playing
field somewhat.
ProgrammingLand and associated software is covered by Gnu
GPL. Interested parties should contact the first author.

11. ACKNOWLEDGMENTS
Our thanks to many students who have used, tested and
contributed to this project. ProgrammingLand has been supported
by ND-EPSCoR through the FLARE program under EPS-
9874802 and is currently supported by National Science
Foundation Grant EIA-0313154. The authors gratefully
acknowledge both of these organizations.

12. REFERENCES
[1] Curtis, Pavel, Mudding: Social Phenomena in Text-Based

Virtual Realities. Proceedings of the Conference on
Directions and Implications of Advanced Computing
(sponsored by Computer Professionals for Social
Responsibility)

[2] Hill, Curt, Brian M. Slator, Lisa M. Daniels. The Grader in
ProgrammingLand. In Proceedings of SIGSE Technical
Symposium on Computer Science Education (SIGCSE 2005),
St. Louis MO., (March. 2005).

[3] Hill, Curt, Brian M. Slator and Lisa M. Daniels. An Online
Resource for the Introductory Programming Class. In
Proceedings of the 2nd International Conference Information
Technology Research and Education (ITRE ’04) (London
Metropolitan University, London, UK, June 28 -July 1,
2004). IEEE, Piscataway, NJ 08855-1331.

[4] Hill, Curt, Vijayakumar Shanmugasundaram and Martina
Miteva. Database Tools to Administer Programming Land.
In Proceedings of 18th International Conference on
Computer Applications in Industry and Engineering (CAINE
2005). Honolulu, HI., (November 2005).

[5] Holmevik, Jan Rune, and Cynthia Haynes. encore, Open
Source MOO project.
http://lingua.utdallas.edu/encore/index.html Date accessed 9
January 2006.

[6] Saini-Eidukat, B., Schwert, D.P., Slator, B., Daniels, L., and
Terpstra, J., 2005, Research on authentic assessment using a
virtual world for learning geology. Geological Society of
America North-Central Section, 39th Annual Meeting, 19-20
May 2005, Minneapolis, MN.

[7] WWWIC (2005). World Wide Web Instructional Committee.
http://wwwic.ndsu.edu/. Date accessed 9 January 2006.

