A Linguistic Characterisation
of Design
In Text-Based Virtual Worlds

Anna Cicognani

Laureain Architecture (Hons)

Supervisor
Dr. James Rutherford
Associate Super visor

Prof. Mary Lou Maher

A thesis submitted in fulfilment
of the requirements for the degree of

Doctor of Philosophy

Department of Architectural and Design Science
Faculty of Architecture

University of Sydney

OAnna Cicognani, September 1998

APPENDICES

Appendix A (Acronyms and Glossary) is included in the paper version of his thesis.

List of Appendices Enclosed in the CDROM

APPENDIX B. Basic MOO Commands
APPENDIX C. MOO Descriptions of Areas and Entities

RiverMOO

Diversity University

BayMOO

BlobMOO

LambdaM OO

AthenaM OO

The Sprawl

DaedaulsM OO

MediaMOO

AlCoreMOO

BioMOO

PennMOO
APPENDIX D. Virtual Campus examples

Designer Class

Design Speech Acts

Area Prototypes

Families
APPENDIX E. LambdaM OO *B:Arbitration
APPENDIX F. Petition #7976 and relative messages
APPENDIX G. Linksto Electronic Sites

© Anna Cicognani, September 1998, PhD Thesis, Appendices

181

APPENDIX B. Basic MOO Commands

When accessing aM OO, a user finds a series of commands written to easily perform
communication, navigation, and construction. However, commands in MOOs are
continuously written and customised: users can write code to adjust input and output to their
needs. The linguistic interface, the commands a user utilises to interact with the MOO
software, are flexible and malleable: by renaming a command or an entity, asimpler use
can be provided. Some VWSs, modelled on specific environments (eg. a spaceship) have a
distinct way of giving outputs. For example, aMUD can respond with the following:

>say What do you think | am doing here?
Creeper announces, “Wat do you think | am doi ng here?”

others would output:

Creeper says, “Wiat do you think | am doing here?”
or

Creeper asks, “Wiat do you think | am doing here?”
or

Creeper babbles, “Wat do you think | am doing here?”
To enter in more details without analysing the modalities of command issuing, | believe that
an overview of basic commands which can be used in a MOO and some examples of their
effect will be helpful to understand the environment. | will therefore explain some of the
most common commands and their responses (outputs). The *>* stands for the user’ s input.

Communication

say, to say something to the others in the same room:

>say a hice dress that one!
Creeper says, “a nice dress that one!”

whisper, a private communication command between two usersin the same room:

>whi sper what r u doing here to sneep
You whi sper, “what r u doing here” to sneep-the-beep

page, a private communication command between two users in different rooms:

>page sneep hey u around???
Your nessage has been sent.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 182

And the recipient will see:

You sense that Creeper is looking for you in Creeper’s Lake.
It pages, “hey u around???”

think, to show text in a particular way:

>think | guess | am awake
Creeper . 0 O(| guess | am awake)

@shout, sometimes restricted to administrators only, to say something to everyone
connected at that time:

>@hout | want everybody here now
You shout, “I want everybody here now ”

and others will see:

Creeper shouts, “I want everybody here now”

@send, to send an MOOmail message, in the classic Email fashion

Other commands, like “murmur,” the same as “whisper,” or “sign,” to hold up asign for
everyone to see the message written on it, are customisations of some MOQOs.

Action

Thisis amore complex group of commands. Each user, according to the experience, has a
set of commands for actions; also, a particular room can allow certain events, and therefore
will have added commands which can be used by al the people in that room.

Some basic ones are:

get, to pick up something:

>get m xer
You take the m xer.

Others will see:
Creeper takes the m xer.
drop, to drop something:

>drop m xer
You drop the nixer.

Otherswill see:
Creeper drops the m xer.

give, to give something to someone:

>gi ve mixer to sneep
You hand the m xer to sneep-the-beep.

Sneep-the-beep, another user, will see:
Creeper hands you the m xer.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 183

Other more specialised commands, like open, close, put, sit, stand, start, stop, hush, play,
wake, and many others, have a similar effect to what they would do in areal life situation.
The general guideline for commandsis, in fact, natural language. Commands are
programmed in such away that there is a intuitive correspondence between what a
command would do, and its effects. For example, the command “open” would have the
effect of opening something in the MOO, as the action of opening would bein real life.
This observation, which may at first sound banal, isin fact important to understand how
linguistic acts in a text-based VWs correspond to actions in real life (and not necessarily
speech acts).

The performance of commands in text-based VWSs s only one of the aspects, abeit not very
well studied, of the complex nature of these environments. It is crucial, at this point, to
recognise that in MOOs language is not simply a communicative medium, but has got a
constructive nature, and a consistent Design potential.

Navigation

Navigating the MOO means moving from one room, or space partition, to another. It can be
done in two ways: walking, when rooms are contiguous, or teleporting, when they are not.
Both walking and tel eporting can be disabled, when aroom must remain private, closed to
some users or everyone. To walk, users type the name of the exit, or the direction:

>of fices
You go to the office area.

or

>stairs
You go up the stairs.

To port from one room to another, the command “ @go <name or number of room>" is
used:

@o offices

or

@o #184

both will port a user to the Office Area, which corresponds to number #184 in the MOO
database.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 184

Bridges and Charitos (1996) argue that “teleportation may simplify navigation but may also
prove disorientating as it corresponds to gaps in the cognitive maps generated by
operators.” The design of the environment does not have to respond to physical constraints,
neither it hasto prove logical connections among space partitions, since at any time a user
can jump from one place to another. The contiguity and continuity constraints which are
inevitable in a physical environment become irrelevant in aVW. However, navigation isa
major component in the design of the structure of VWs: since the layout map is not bound
by proximity, other rules must be found when approaching the world design. For example, a
network model, where rooms are connected to others with a similar theme or task, or a
container model, where a bigger container with a theme includes other sub-partitions of
related theme (eg. an office building with not only other offices, but also services,
reception, and so on).

© Anna Cicognani, September 1998, PhD Thesis, Appendices 185

APPENDIX C. MOO Descriptions of Areasand Entities

The following descriptions of entities (areas and things) have been found during visitsin
other MOOs. For each MOO visited, | report the address and a short summary of what kind
of rooms and navigation have been encountered. Follow examples of area and entity
descriptions. The copyright remains with the correspondent MOO, respective authors, or
howel se specified by each MOO.

RiverMOO

(river.honors.indiana.edu:8888)

Room descriptions: function, with some attention to details. In general, descriptionstry to
give an impression of how the room feels like (smells, colours).

Navigation: cardinal points or simple intuitive names (exit)

SAMPLES

Cty Slum (#2032)

This building was once a tire manufacturer, but when the buil ding was
gutted by fire in 1954, it was abandoned. You can still see the scorch-
marks on the walls.

Now, it has been nade into a place where those of RiverCity's |ess
fortunate sort can sleep with a roof over their heads. But sonetines it
seens as though the roof is going to cave in. The walls are bare
concrete, with two barred, broken wi ndows on the far corners of the
room

There is a light fixture squarely placed in the mddle of the ceiling.
It is swinging froma thin, fraying black cord. There are five cots

al ong each wall. The legs of the cots are rusted. The sheets of the
cots are gray and dirty.

The roomis public. To nmake it your hone, type @ethone.
There's a door |eading back out to the Back Alley. The door is closed.

You are here. Manischewitz (asleep), Hardw ck (asleep), Mittman
(asl eep), Translucent Adept (asleep), braindead (asleep), shakes the
clown (asleep), and Curunir (asleep) are asleep here.

You see Sl um Jack, Sl um Phone, and BerryMan (asl eep) here.

Gobvious exit: alley to Back Alley

ANSI Version 2.1 is currently active. Type "?ansi-intro" for nore
i nf or mati on.

Back Alley (#1785)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 186

A dark, musty, back alley. The paving is still the ol d-fashi oned
cobbl estone of an ol der generation. |Its pathway is narrow, but
accomodating for a mdnight stroll. The buildings that line this
alley are old, but they have been reasonably kept up. The doors are
shorter than the average hei ght of peopl e nowadays, which adds to the
pi quancy of the place.

The col ours of the buildings are the only things that set it a bit out
of place. Once in a while, the odd building exhibits a bright col our
contrasting with the drab ol d shades of an age gone by. The place
calls out for you to join in celebrating the conbination of old and
new.

You are just hangin' around, no place to go...just chillin'.

You may stroll to another part of RiverCity via the follow ng
directions:

sout hwest to Downt own west to Black Angel Cenetery
south to RiverCty Centre

As you | ook around here, the follow ng places catch your eye:

slumto Cty Slum Bl ueDoor to Hall

GreenDoor to RoaDs pool hall to Dragonfly's

NASA t o NASA Chateau to Main Hall [Chateau
Ri ver]

low brick arch to alley puzzles to Little Shop of
Puzzl es

NASA (#2109)

A gutted old storefront turned into a chilled out spot for free-

t hi nkers, ravers, and other nenbers of the urban underground. Laser
lights, snoke, and powerful anps add to the anbi ence. The groovy wooden
dance floor begs to be abused as does the skate ranmp at the back of the
shop. There is a Smart bar tucked away under a | ow rafter beam and
pillows spread out in recesses for relaxing. The deep bass, hectic

beats, and spacy notes filling the ears of those inside with techno,
rattle the old, covered windows at the front of the shop. Wl conme to
all those ready to open their mnds..... ENJOY!

You are swaying to the beat.
You see a sign pointing north here.
Qobvious exit: EXIT to Back Alley

Hal I (#1933)

Your eyes take a nonent to get used to the darkness of the room The
air is fresh and clean here, and faintly scented. The first thing you
see is a candle lit on a bookstand in the northwestern corner
Eventual |y, you discover a stick of incense set in a wooden burner, on
an old oak chest. Finally, you see the chair stored under the stairs.
You are here.

OQbvi ous exits:

South to Living room North to Back Alley

© Anna Cicognani, September 1998, PhD Thesis, Appendices 187

Diversity University
(moo.du.org:8888)

Room descriptions: afew details are given. Most of all the descriptions are about what can
be done in the MOO. Instructions on how to use the room or the objectsin it contained are
sometimes given.

Navigation: through names of exits and cardinal points. DU has got also a Web based
interface, with a graphical map of its campus.

SAMPLES

Archi tecture building (#666)

....the entrance hall to the Architecture Building.

Besides the other exits out of this room there is an elevator here. A
cl oser | ook would show the avail abl e buttons.

St udent Uni on Lounge (#11)
This is a busy place, frequented nostly by students who're | ooking for

coll eagues to talk to and ways to kill time. There is an old red couch
in the corner, usually occupied by sleeping students. Several hallways
branch off this center, and large glass doors on the southern wall |ead

to the foyer.

Gand Hotel Main Entry (#471)

THIS IS A HUGE LOBBY remi ni scent of the najestic hotels fromlong ago.
There is a split staircase that curves up fromthe back of the | obby.
At the end of the desk a wought iron elevator was installed to provide

service for those staying at the hotel. The hotel contains a
restaurant and conference center as well as a swi mm ng pool and gift
shop. Lining one wall is an elegant *sofa with several *chair(s) facing

it inasem-circle. In the center of the roomyou see a | arge poster
on an easel saying:

<====== \WW&st to the DU Conference Center

MOOt each Learning Center (#1578)

THE MOCt each LEARNI NG CENTER i s dedicated to teaching DU nenbers MOO
basics. It is also for the training and support of teachers who wish to
conduct classes here in MOOspace. Resources are available for the self-
directed study of basic MOO commands, MOO programm ng and speci al

teachi ng strategies and techni ques useful for MOQteaching. Enter

DI SPLAYS to see sone of the resources already avail able then SHOW #
(nunmber of display item). O, LOXK or READ (#) ON (DOCUMENTNAME) the
docunents in the room W hope to be adding new things all the time, so
if you have sonething to contribute please contact Zak or Jeanne.

To get *Elsie the cowto respond to you, type: ACTIVATE ELSIE

DU Conference Center Foyer (#15807)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 188

A spacious foyer kept in dark shades of pastel colors and white. On
the carpetfloor you see shoeprints (the kind you get on freshly
vacuured carpet) that accunulate to a straight track |eading fromthe
northern conference roomto the one in the south and back. An enornmous
couch which curves around a round table in a semcircul ar shape
occupi es nost of the southwestern area.

Conf erence Room (north) (#15438)

A large, oval shaped room Fromthe ceiling many fair sized spotlights
illumnate the entire roomand dip it in warm bright light. There's a
podi um at one of the narrower ends of the room Long rows of chairs,
all facing the podium occupy the rest of the floorspace.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 189

BayMOO
(baymoo.org:8388)

Room descriptions: the rooms are mostly open air areas. Feelings of how the climate, the
wind and smells fed like, as well as descriptions of details are given. Some instructions on
how to use the objects are al'so given.

Navigation: through cardinal points as well as name of exits.

SAMPLES

*** \\e| cone to BayMOO ***

ANSI Version 2.1 is currently active. Type "?ansi-intro" for nore
i nf ormati on.

R R R R R R R RS R R RS R R R RS R R RS R R R R R R R R R R R R R R EEEEREEEEEEEEEEE R

There are new news itens for you to read. Please type "news" to get a

sunmary.
IR S SRS S S SRS S S S S S S S SRR EEEE R R RS SRR SRS REEEEEEEEEEEEEEEEEEEEE RS EEEEE R

You have connected as a Guest to BayMOO. W want our guests to fee

wel conme here. As a guest, you nay create up to 2 objects. You are about
to be asked to give yourself a nane and description... This way, you
won't just be some anonynous guest, but yourself. Have fun! --The
BayMOO Managenent

[Pl ease type the name you wi sh to be known as.]

(Follows a questionnaire)

CGuest Logi n Ant echanber (#81)

A smal|l circul ar deconpression chanber for new guests to catch their
breath and orient thensel ves to BayMXO space. Wien you are finished in
here, type south to enter the Aquatic Dore.

Qobvi ous exits: SOUTH to THE AQUATI C DOME and JUMP to Introduction to
Bay MOO

You see Popul ation Sign here.

sadi sos [Quest], oit [Guest], jupiter [CGuest], jenny [CQuest], anelina
[Guest], and tagoo [CQuest] are here.

The air wavers before you, and Pacifica, a dreamike figure of a woman
draped in seaweed, seens to hover silently before your eyes.

Wel come to BayMOO, a world for exploring the virtual Bay Area,
Net space, and Ot her Wbrl ds.

As a guest, we encourage you to explore the spaces here. You are al so
granted a privilege quota of two. This nmeans that you nmay create two
objects while you are logged in as a guest to BayMX

© Anna Cicognani, September 1998, PhD Thesis, Appendices 190

When you depart, your created objects nust be recycled; but you can get
a feeling what it is like to nake and use your creations here at
BayMOO. W hope that you decide to return and help us build our world!

At any tine, type @elpers for a list of people who are willing to help
with anything. To contact any of them type 'page <pl ayer> <nmessage>'

Paci fi ca beckons you to go SOUTH.

BayMOO Menori al Gardens (#14984)

The gentl e breeze brushes agai nst your face as you enjoy the aroma of
the fresh cut grass. Al around you see nenorials of BayMXers that
have passed fromthis life. Mst of all, you notice the silence..
Gobvi ous exits: east to Menorial to Jade, BAY to The Bay Area, and
MEADOWt o A Mountai n Meadow

The Hotel California (#2158)

You find yourself on the outside of the Hotel California. The |arge
court-yard is covered with nice, healthy, green grass. A fountain
quietly sprays a light mst into the air. The season's flowers adorn
the bottomof the walls where the walls neet the ground. The tightly
fitted field-stone walls are covered with Ivy and the notor is covered
with that nasty | ooking green nboss. The walls are weat her-beaten, but
st urdy.

You see Bulletin, Plaque, Scrabble Board, Mtorhone, and Gafitti Wl
here.

Qobvi ous exits: south to The Bay Area, north to Lobby, northwest to The
Cantinia Restaurant, and sout heast to Dock

BayMOO Par k (#7318)

In the distance, you see a clock tower. (Type |ook clock).

A lush green park that has a babbling brook flowi ng thru one area.
Lyi ng across the brook are sone recent fallen trees that invite you to
sit on them As you walk farther down the path, you cone to a |arge
flat stone. One of theminvites you to sit on it, as you ponder your
t houghts. Then you enter a clunp of trees, and see a bench that
stretches between two of them You may sit (type sit stone, |log, or
bench) and talk quietly to others at your seat. People who remain
standing will be heard by everyone in the park

Look picnic table to see the good stuff to eat. You can always add
some of your own food to the supplies.

You see | og, stone, bench, and picnic table.

Obvi ous exits: DOVE to THE AQUATI C DOMVE

A Mount ai n Meadow (#10423)

You are in a neadow high in the nountains. The sky is pure blue. The
air is clean and crisp. The neadow i s ringed by snowcapped nountai ns
except for the break through which you arrived. The neadow is strewn
with spring wildflowers. At the center of the neadow is a place where
the grass has been worn down. Here you see several itens. You nmay <gaze
GW and <l ook journal > Also <look EP> You may <light candl e>.

Pl ease <renmenber> Amanda

Pl ease <read here> for the order of the cerenony. [held 4/17/92]

© Anna Cicognani, September 1998, PhD Thesis, Appendices 191

You see Granite Wedge, A Journal for Mandy's Friends, Epiphany, Candle
for Amanda, Wite Rose, Another Snall Stone, a single rose petal, Small
Stone, A small stone, and A Rose from Freedom here.

Obvi ous exits: MANDY to Bl ackwood

| deas and | ssues (#99)
A place to discuss ideas and i ssues about the San Franci sco Bay Area

To place a notice in here, just @reate #9 naned WHATEVER, drop it,
then w*ite you nmessage on the note. O contact Yea, and he'll add your
text to any of the already-existing notes here.

Gobvi ous exits: west to The Bay Area

© Anna Cicognani, September 1998, PhD Thesis, Appendices 192

BlobMOO
(ghoti.stanford.edu:7777)

Room descriptions: Descriptions are about the details and the objects in the room, and
general feelings of the place.

Navigation: through cardinal points. An ‘area’ command gives a map of where the player

is; a‘map’ command gives a general map of the environment.

SAMPLES

The hole in the ground (#171)

Entering through the rather large hole in the ground, you find yourself
surprized at just how attractive a hole in the ground can be made. The
hole widens into a large room wth sharp edges and chi sell ed corners.
The roonmis walls are bare earth, but peculiarly, nothing |ooks dirty.
You see only a fewtools resting in one corner of the room plus sone
various nusical instruments fromall over the land are strewn about.
The floor is lined with straw, and there | ooks to be an enornous pile

of feathers and straw in one corner covered with a sheet -- |ooks |ike

a giant-sized bed.
You can go [up] to get out.

The Druidic Forest (#129)

The trees are enornmous, their dark green branches reaching into the
upper air and bl ocking out the sunlight alnost entirely. In the dark

shadows of these giant trees, one can inmagi ne any nunber of strange,

hi dden creatures just out of view |In fact, the occasional streak of

color seen out of the corner of an eye may cause one to whirl about

suddenly and then | augh nervously when not hi ng unusual appears. Even

the trees and plants thensel ves are oni nous, seenmng to possess an
eerie inner life. The nost striking thing in the forest is the

strange, ash-white tree to the south which seens to dwarf everything

around it and bars all passage in that direction

To the [west] is the forest trail. To the [south] is the MIlenia
Tree

You see a shimmer in the air here.

A sprite guest, a pixie guest, a |eprechaun guest, and a browni e guest

are asl eep.

The M Il enial Tree (#390)
The [floor] of the roomis strangely carpeted in soft, green grass,

apparently fed by the light fromthe rooms single, round wi ndow On

it you see nothing. Near the wi ndow, a |leaf [hammock] is suspended

between two sturdy branches. On it you see nothing. A heavy [wooden
tabl e] occupies the center of the room On it you see nothing. Near

the table is a quaint-looking wooden [rocking chair]. The worn | ook of

the chair's seat attests to its confort. A small [tree] here | ooks
oddly out of place.

The view fromthe window is of the tops of the many tall trees that
grow in the Druidic Forest far bel ow.

You see ant class here.

Al yssa is asl eep

© Anna Cicognani, September 1998, PhD Thesis, Appendices

193

Corwi n's hangout (#649)
This roomwas built underneath Trakand Plaza. |In the ceiling is an
openi ng, which appears to be the bottomof a well.

A bed of hay is in the corner. No one is lying onit. A soft
[cushion] is placed directly underneath the opening in the ceiling.
To the [west] is the entrance to a small tunnel. Fromthe tunnel to
the [south] conmes a foul odor. A [ladder] on the side of the well

| ooks sturdy enough to clinb.

You see the (bject #900 and Corwi n here.

ENTITITES

rocking chair (#570) is owned by G ggles (#421).
Aliases: rocking chair and chair
A generic piece of furniture, *with* sit/stand verbs.

floor (#227) is owned by G ggles (#421).

Aliases: floor

The fl oor of the roomis strangely carpeted in soft green grass.
Alyssa is sitting on it.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 194

LambdaMOO
(lambda.moo.mud.org:8888)

Room descriptions: are about the details and the objects contained. Directions are given in
the descriptions of the rooms themselves, almost always using cardinal points. The level of
detail is quite fine. The names of the rooms are often aligned with their function and the
objects contained.

Navigation: Generally through cardinal points (up and down included). The MOO is so
vast that players use their own symbols in their own areas. There is ageneral map of the
MOO, to be found in the living room (#17).

SAMPLES

The Living Room (#17)

It is very bright, open, and airy here, with [arge plate-glass w ndows
| ooki ng sout hward over the pool to the gardens beyond. On the north
wal |, there is a rough stonework fireplace. The east and west walls
are al nost conpletely covered with | arge, well-stocked bookcases. An
exit in the northwest corner leads to the kitchen and, in a nore
northerly direction, to the entrance hall. The door into the coat
closet is at the north end of the east wall, and at the south end is a
sliding glass door |eading out onto a wooden deck. There are two sets
of couches, one clustered around the fireplace and one with a view out
t he wi ndows.

You see README for New MOCers, Wl cone Poster, a fireplace, Cockatoo,
lag neter, a map of LanbdaHouse, Hel pful Person Finder, and The

Bi rt hday Machi ne here.

The Kitchen (#24)

The kitchen is of a nodern design, very large and well-lit, yet stil
honmey and confortable. The walls are covered in beautiful natural-wood
cabinets and the stove is set into a large '"island" counter in the
center of the room Over the sink, along the south wall, there are

wi ndows | ooki ng out onto the pool and gardens. At the west end of the
room there is a little breakfast nook with a table and four chairs;
beyond it to the west is the famly room A brass ring is recessed in
the tiled floor of the southeast corner, and appears to be part of a
trap door. There are doors in the north wall leading into the dining
room a sliding glass door to the south, and a doorway in the northeast
corner |eading out into the entrance hall

You see cookbook, the kitchen sink, Scraps of Paper, vent, a
refrigerator, dishwasher, M crowave, cuisinart, a piece of Saran
Wap(tm, carrot, and plate of cookies here.

The Di ni ng Room (#28)

This roomis dom nated by a | arge pearwood table and six nmatching
chairs. On the north wall is a | arge bookcase, flanked on each side by
French doors | eading northwest to the drawi ng room and northeast to the
snoking room The kitchen is visible through a simlar pair of doors
to the south, and a |large, open archway | eads east into the entrance
hal I .

© Anna Cicognani, September 1998, PhD Thesis, Appendices 195

You see Masterm nd Board, Masterm nd Instructions, Deck of Playing
Cards, Automatic Poker Pot, zool ogist, Acquire, Set Game, Quarto,
Wboden Chest of Ganes, O ibbage, Nunber puzzle, Frand's reversi board,
Frand' s backganmon board, Snap's connect-4 board, gess board, UpWrds
board, PenteSet, Ghost gane, 'nopoly bank, go board, Gane of Hearts,
bl ackbox, Rog's solver for Frand's m nd bender, Twister (tm,
Solitaire, Scrabble Board, Scavenger Hunt List, Cue, Frand's mnd
bender, Rubik's Cube, Frand's chessboard, an old coin, and Crazy Ei ght
Bal |l here.

The Entrance Hall (#19)

This small foyer is the hub of the currently-occupi ed portion of the
house. To the north are the double doors formng the main entrance to
the house. There is a mrror at about head height on the east wall,
just to the right of a corridor leading off into the bedroomarea. The
south wall is all rough stonework, the back of the living room
fireplace; at the west end of the wall is the opening | eading south
into the living roomand southwest into the kitchen. Finally, to the
west is an open archway |eading into the dining room

You see mirror at about head hei ght and Edgar the Footman here.

The Library (#1670)

The library is built in a style rem niscent of old English libraries:
very stately, walls conpletely covered in neatly-arranged books, with a
few very confortabl e-1o00king chairs. Each chair is equipped with a
footstool, a small side-table and a reading lanp. The carpet is very
plush and padded. Al in all, the roomhas an old world kind of charm
Bet ween the stacks to the northwest you see the | aw section of the
library, and there is an alcove just to the west; a massive wooden door

in the south wall |eads back to the corridor

You see:

Dusty Bookshel f New Submi ssi ons Shel f

Ref erence Shel f Hel pful Person Fi nder

Ceogr aphy Shel f Ceneric Bulletin Board
Strange Painting Omnership Transfer Station
Literature Shelf Hi story and Political Science
Shel f

M scel | aneous Shel f

Law Section (#7030)

This section of the library seens to be dedicated to MOO | aw. Mst of
the shelves contain rows upon rows of thick volunes of case | aws,
precedents, and interpretations. One set of shelves has been set aside
for ballots. Upon those shelves |lie several rolled up scrolls of
parchnment. A few tables and chairs are neatly arranged around the
room one has books scattered upon it. The rest of the library can be
seen through the stacks to the southeast. A small sign on a table
reads "For information, type “help here'"

You see passed shelf and failed shelf here.

Corridor (#61)

The corridor fromthe west continues to the east here, but the way is
bl ocked by a purpl e-velvet rope stretched across the hall. There is a
doorway leading into the library to the north, and another doorway to
t he sout h.

You see a sign hanging fromthe mddle of the rope here.

CGuest Bat hroom (#835)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 196

This facility is under construction (quite clearly) by several
different contractors who don't know about each other. Soneone has
started to cover the north wall with carbon black tile, but soneone
el se has started in with clashing sunset brown paneling on the west
wal | !

The drywal | has not even been hung yet on the east wall, and it is
still a bare franmework of two-by-fours and electric cables. One thick
bl ack cable cones in fromthe wall and di sappears into a rough hole in
the center of the floor

There are two bat htubs; one is a verdigris green fiberglass tub with
bubbl e jets, and the second is a cast iron clawfoot tub that is propped
up on its end because it does not quite fit in the room The floor has
nostly anethystine pai nted hardwood towards the north, but soneone el se
has started putting down casino pink slate near the door that exits to
the south. One of the workers has left a |adder up agai nst the west
wal |, and it leads up into a hole in the ceiling.

You see a bl ack cabl e here.

The Pool (#1428)

The swi nming pool is olynpic sized, allow ng anple roomfor everyone.
This is surprising, considering that the pool deck is a nere 50 feet
long... The water is strangely nmurky; you woul d expect better care to
be taken of the pool. You might find sonmething if you dove down. The
sunlight glinting off the water makes you squint.

You see pool sweep, lily pad, thernoneter, a bloated corpse, beach ball,
and fishing boat here.

You port to The Pool.
Spl ash!

The Drawi ng Room (#56651)

Alight and airy roomwith a high ceiling and an ornate crysta
chandelier. The walls are decorated with a delicate floral print
wal | paper, and a Persian rug with a deep blue ground covers the floor
There is a couch along the west wall, a w ng-backed chair and an
overstuffed chair across fromthat, and a wi ndow seat. Though it is
dark beyond the chiffon curtains covering the bay w ndow, |ight from
the chandelier casts a warmand friendly gl ow over the entire room A
| arge stone fireplace dominates the far end of the east wall. A curio
table (with a stanp al bum Cherry Puzzle Box, and a small bell on it)
is near the window A trenendous aquarium huns and bubbl es quietly on
the west side of the room A naple door to the east |leads to the
Snmoki ng Room you can see the Dining Roomthrough French doors to the
sout h.

The Snoki ng Room (#51556)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 197

A dark and spaci ous room which retains a kind of warnth, despite its
crepuscul ar aspect. The ceiling is high, and a brass gasolier lights
the roomwith an orange, flickering |light. Heavy paneling, made of
burled maple, lines the walls, and a burgundy, Biltnore carpet covers
the floor. The room s seating includes a | eather sofa, a bergere
arnchair, and a pearwood chair. An Edwardi an-style fireplace is set
into the wall. Set into the wall above the fireplace is a pair of
hooks with two fencing sabres resting on them The single windowis
framed by full-length draperies. Next to the windowis a painting.
Of to one side is an el mburl humidor. A long velvet cord hangs down
fromthe ceiling. 1In the far corner is a pipe rack. Standi ng agai nst
one wall is an antique, cherry bookcase filled with classic works of
literature. A silken tapestry hangs fromthe wall, woven into a
beautiful rendition of a nedieval castle. It shimers in the |ight,
attached to two recessed wought iron hooks. The door to the Draw ng
Roomlies to the west.

A set of French doors to the south lead to the dining room
You see An al bino wolf and groovie heart here.

Edi tori al Boardroom (#5747)

This is where it all cones together, a small conference roomwth a | ow
ceiling, paneled walls and the usual flourescent lighting. Here's
where all of the big stories get decided. You see a fair anount of
ebris remaining fromthe nost recent editorial staff meeting: coffee
cups, clippings, and a fair nunber of typewitten sheets with

i ncoherent scribbling scattered all over the large oak table in the
center of the oom

The Verb Editor and the Note Editor have offices adjoining the
conference roomto the north and west respectively. The CGeneric
Editor's office is to the northwest, but he's in a really bad nood
today so | wouldn't advise going in --- it's not an amazingly friendly
pl ace anyway.

The el evator is to the south, the stairwell door is in the southwest
corner, the door to the east corridor is in the southeast corner. A
St at e- mrandat ed 2nd- Means- of - Egress door is to the east.

You see ur-Rog's Display Case, Wiiteboard, and Lou Grant here.

North Wng Fireside Hall (#47302)

The air here is filled with the snell of spruce and pine, wafting
through the air fromthe fireplace which sits in the center of the
room The roomis decorated in a confortable dark brown, with a
var ni shed hardwood floor and thick dark oak beans supporting the
ceiling, and giving the rooma general sense of solidity.

Li ned up agai nst the western wall stand four or five arnored statues,
with swords and axes in their netallic hands, |ooking |ike obedient
servants of Haakon. The fireplace sits in a depression in the center
of the room radiating cozy warnth throughout the room A wi de,
circular couch surrounds it, covered in a lush uphol stery.

Three |l arge archways |lead out to the north, south, and east, wth
ornate decorations covering the varni shed wood. In the southeast corner
of the room a large spiral staircase |eads up

Foyer (#29992)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 198

A lavishly decorated roomwith thick red carpet. There are tapestries
hanging on the walls. To the north is a huge door with ushers standing
on both sides of it. There is a podiumto the right of the ushers.
Sitting on the podiumis a registry and a pen. There is an archway that
| eads back to the south. There are wooden doors to the west and east
with signs that say ' GENTLEMEN and 'LADIES', respectively. There is a
mar que si gn above the door that says: Open House. There is a gold

pl aque hangi ng on the wall

ENTITIES

a bl ack cable (#80563) is owned by grQovY (#47498).

Ali ases: a black cable, black cable, and cable

A thick black electric cable. It cones out of a steel punchout in the
eastern wall, forns a large tangle on the floor and di sappears into a
rough-cut hole in the center of the floor

door (#52810) is owned by G oundskeeper (#80763).
Ali ases: door
A narrow wooden door, such as might lead into or out of a closet.

a fireplace (#43212) is owned by G QoVY (#47498).

Aliases: a fireplace, fireplace, fire, and nmante

An old fireplace taken froman Irish castle that was destroyed in the
16th century. Kindling and |l ogs are piled high along side it. Its
mantel is nearly ten feet off of the ground and is supported by two
stone gargoyles. On the nantel are several fam liar portraits and the
unusual sort of bricabrac that you have conme to expect, including a
cuckoo clock, Graffiti, Big cookie for Graden, CGoddess, A cup of tea, a
conpass, Blg Drink #8, an atlas, and the key to the Pearly Gates. A
bl azing bonfire rages in the fireplace. In the flanes you see Generic
Cockat oo Gaggi ng Device, about to burn but sonehow still resisting the
fire.

di shwasher (#12553) is owned by Bl ackbriar (#30119).

Ali ases: di shwasher

A CE-3950 Di shwasher, Standard | SO 3950-12 Edition. Fully ODA, EI SA
and VGA conpatible. Ceans Al Itens That Can Be O eaned. Renpves Food,
Unl ess Too Badly Splattered.

a refrigerator (#1296) is owned by Lanbda (#50).

Aliases: refrigerator and fridge

This is a fine, large fridge that |ooks Iike it could hold enough to
support a fairly large household. There are several little magnets on
t he door; nmany of themare being used to hold up notes. Type 'read 6
on fridge' for help on reading what's here.

Cont ent s:
Vast railroad enpire... (#32366)
I'"'mkinda busy but I'Il clean your stuff... (#10395)

Adventuring (#277)

"Not hi ng W Can Do" (#15251)

Grand Qpening of North Wng and Bal | room (#37266)
How to use notes on the fridge (#44)

Group Therapy (#27174)

See the sites of Lanbda! (#34711)

"If you value your sanity..."' (#46478)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 199

MXers at Work (#75240)

Character Create Status (#7403)

*** | AVBDAMOO T- SHI RT OFFER*** (#75014)

SET! A new gane! (#28376) (#24214)

New Nei ghbor hood! (#31986)

Roste's Sports Bar (#44880)

Announci ng waffl e's book: Your Internet Consultant (#8996)
new and i nproved hedge maze (#11030)

Amazi ng | Ching garden now open! (#46794)

[Foobi es (#23371): Be in a Book By Foobies---Read On for Details]
(#20302)

Grl Tal k (#40264)
FooBook Mailing List (#12762)
Deut sch sprechen hier (#88084)
World Wde Wb (#7855)
A Starnmap (#62627)
New Mailing List (#93578)
My_book (#11150)
Puzzl e room (Lover's Bower) now open (#3810)
Looking for a set of Trunps (the kind from Anber) (#15407)
Harnful radi oactive nutations for you and your friends! (#15697)
M | eage (#55420)
My Mandolin is Looking for a Honme (#59273)
Runors of space alien visits (#63257)
New ganme in the Dining Room (#13076)
"Foobies is Mrsky (#8212)
Conput er gane artist needed for gane/ deno group. (#89922)
=> (OS/2 Warp Peer Support avail able on *Warp-Mail (#25135) <= (#7993)
Java- Enabl ed Moo! (#92594)
pai d announcenent (#9738)
Re: pai d announcenent (#46595)
read *Petition:Ctizen (#74484)
Baby Announcenent (#90222)
native anerican mythol ogy wOOF! (#81836)
Features for Cuests! (#11056)

A public outcry is cast. Vote no on *b:shutdown, or we will take the
ightbul b out of the fridge!!!, oh and we need m |k, bread, and beer..
(#27741)

Krups Maxi no sem -commerci al espresso nachine for sale (#13735)
Read me-World MOO (#66699)
Rebirth of *I R SH (#65110)
First Puzzle on MOO (#134)
[Curator (#88296): LAMBDAMOO MUSEUM PRESS RELEASE 4/ 16/97] (#98197)
Announcenent (#110692)
InfoCorp - A MO intelligence agency. (#95694)
M d- South MXCers (#53975)
Political Announcenent (#69487)
MXOse - the Forum 2 online community (#69175)
Lanbda | nformati on Center Opens (#6378)
*com cs (#8511)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 200

AthenaMOO
(athena.edu:8888)

Room descriptions: the descriptions are pretty poor, with alow level of details. Some
rooms totally lack description. This MOO is Pueblo enhances, which means that with an
appropriate client (Pueblo) pictures can be visualised.

Navigation: through abbreviations of room names.

SAMPLES

The Propyl aia (#4702)

Si x towering columms support the roof of the outer porch and six nore
line the way to the nassive gate. Looking up one sees cofferings
bet ween marbl e beans all painted blue with gol den stars. Beyond the
gate one sees the marvels of the Acropolis franed by the supporting
colums of the inner porch

[Nl KE] -Athena N ke

[A] -Acropolis

[AD] -Administration

[W -Wel cone!

[C] -Conference Hal

Soci al Science Research Center (#1345)

You enter to see a very large, bright roomw th nany video screens as
walls. On the video screens are people fromall over the world going
about their lives. You nmust wal k down slightly, so watch your step
Seats are cushioned and confortable and are in concentric circles
around the dark green carpeted central area. This is a place where
peopl e | earn soci ol ogy by doi ng.

© Anna Cicognani, September 1998, PhD Thesis, Appendices

201

The Sprawl
(chiba.picosof.com:8888)

Room descriptions: Descriptions are about functions, brief descriptions and how the places
look and feedl like. The level of detail is quite fine.

Navigation: mostly through names of exits.

SAMPLES

Chiba Gty Linmts (#11)

The lights of Chiba Cty twinkle in the south east distance. Street
lights intermttently glow, off to the north. The snell of inexpensive
liquor and the whine of cathode ray tubes can be heard com ng out of
Webster's Bar and URL. Just over a big tree-covered hill to the south
lies the Village Square of Connections, a nearly-conpl ete experinmenta
educational environnent. Don't forget to check out the Visitor's
Center.

Qobvi ous exits: north (to 100 Chi ba Blvd), down (to Wbster's Bar and
URL), west (to 100 Pico Ave), Center (to Visitor's Center), and venue
(to The SenseMedi a Venue).

Visitor's Center (#3377)

Wel come to The Spraw Visitor's Center. The Spraw is the Wrld's
First Public Access Wb Server and Multi Media MOO. Publish your own
WAV hone page, put graphics and audio in your objects and roons. Type
hel p @ equest when you woul d |i ke a character

You see Drinking Fountain, Feature (bject C oset, The Sprawl Knife
Laser Tag Video Gane, Christmas Tree, Picnic Table, and Nordic_Wl f
Punchi ng Bag here.

Orange_Cuest (asl eep), Dogwood_Guest (asl eep), Banana_Cuest (asleep),
Spruce_Quest (asl eep), Rubber_Cuest (asleep), Loblolly Guest (asleep),
Peach_Guest (asl eep), Pear_guest (asleep), Cypress_Cuest (asleep),
Eucal ypt us_Guest (asleep), Petrified _Cuest (asleep), Sycanore_Guest
(asl eep), Toon_Cuest (asleep), Redwood_Cuest (asleep), Pine_CQuest

(asl eep), WAl nut_Guest (asleep), and El m Guest (asleep) are here.
Gobvious exits: out (to Chiba Cty Limts), Deck (to The Deck), Restroom
(to Restroon), Survey (to SenseMedia Survey), Kiosk (to Help Kiosk),
and Library (to The Library).

The Library (#4561)

The hardwood fl oor has a large persian rug in the mddle. Overstuffed
red |l eather, clawfooted chairs are placed about the room Book filled
shel ves cover the walls.

You see Looking d ass and "Biochem stry" by Gllianne here.
Qobvi ous exits: out (to Visitor's Center) and glass (to Looking d ass).

Looki ng d ass (#4993)

A lush green | awn spreads out before your eyes. A tall hedge bl ocks
your viewin all directions. The manicured yard is peppered with
hol es. You might be able to nake it through the hedge if you don't
m nd a few scratches.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 202

Gobvi ous exits: CGopher (to Gopher Hole), Worm (to Worm Hol e), Rabbit (to
Rabbit Hol e), and out (to The Library).

© Anna Cicognani, September 1998, PhD Thesis, Appendices 203

DaedaulsMOO
(moo.daedalus.com:7777)

Room descriptions: directions, interesting things in the room, general look of the place.

Navigation: occurs mostly by cardinal points, occasionally by names of exits.

SAMPLES

Travel ers' | nn (#11)

You are inside a small building used by travelers. Doors lead out in
several directions. |If you are new here, please visit the Daedal usMXO
Informati on Booth to | earn about this MO

Qobvi ous exits: out to Qutside Caravansary, west to Daedal usMOO
Informati on Booth, south to Alliance for Conputers and Witing, up to
MABC Virtual Parlor, southwest to CAMC95 Center, down to The Coconut
Cafe, east to Virtual Teacher's Lounge, and TCC to TCC Headquarters

You see a newspaper here.

MABC Virtual Parlor (#2162)

A portable convention center. Lightweight, airy, waterproof. Good to -
50 degrees as long as the surface remains intact. Please do not produce
open flames inside. All warantees are null and void in the event that
the center is exposed to flamable materials or Newtian politics.

Gobvi ous exits: down to Travelers' Inn and north to Convention HQ

You see Recorder2 here.

Conventi on HQ (#1156)

A routine sort of boardroomw th [ong, plain conference table and
unconfortable chairs. Mre water pitchers than people. Since there's
nothing interesting to look at, you're tenpted to turn your attention
to issues pertaining to the CCCC annual convention. You find yourself
tal ki ng about how things went in DC this year and you toss out ideas
for next year's event. Before you know it you're oblivious to the
terrible chairs and the dull decor.

Obvi ous exits: south to MABC Virtual Parlor

You see Recorder3 here.

OWC95 Center (#939)

You find yourself in a conputer conference room A ring of conputers
seens to define the border, but all you' d have to do is scoot a chair
this way or that and you could easily find yourself crossing borders --
and headi ng who knows where.

Cbvi ous exits: northeast to Travelers' Inn and east to Poster Room

You see Invitation to Netoric's Tuesday Cafe Discussion for 5/23/95 and
Dusty Screen here.

Post er Room (#2838)

These are the posters fromthe CAN95 Conference MX session.
OQbvi ous exits: west to CAC95 Center

© Anna Cicognani, September 1998, PhD Thesis, Appendices 204

You see MUDtips, KISS, Teaching Conposition on a MOO, Sanple d ass
Project, The Witery, VR WCenter Project, ESL MOO, WbbedMOO Teachi ng,
WebbedMOO Space, Professional Uses of MJDs, Scholarly Uses of MJDs MOCs
and IRC, and Tips for Structured Meetings here.

Al liance for Conputers and Witing (#1150)

You are in a small anpitheater with a grassy floor. The area is snal
enough for everyone to hear each other, |arge enough to contain all
interested parties. The grass is beautifully tended so that the grass
roots are healthy, giving the | eaves a vel vety | ook

You see Recorder here.
Cbvious exits: north to Travelers' Inn

Through a miracle of cyberspace, you slip through glass, air and w nd
to a spot with a tropical air. The tradewind is fresh, the air noist
and the fragrance of wild ginger pushes you into a different pace.

The Coconut Café (#1710)

Where the lights never go out -- and where you can take off your shoes,
ki ck back, and relax with great tropical drinks and good friends.

Gobvi ous exits: out to Travelers' Inn, up to TCC Penthouse, and wired to
10101

Wred Bel t way

ENTITIES

Scrawl ed Letters (#4276) is owned by cin (#2822).
Aliases: Scrawl ed Letters, scrawl, scrawed, and letters
there seens to be a hint of sone sort here..

a stage (#241) is owned by Jeff (#182).

Aliases: a stage and stage
A snmall stage that is just large enough for you to dance on

© Anna Cicognani, September 1998, PhD Thesis, Appendices 205

MediaMOO
(purple-crayon.media.mit.edu:8888)

Room descriptions: ailmost only about the functions. Objects and afew details are
sometimes described.

Navigation: through names of exits, amap is available

SAMPLES

nmedi a. mt. edu (#367)

You are in a maze of little, tw sty passages.

You see the back of a conputer screen here.

Qobvi ous exits: down to mt.edu, purple-crayon to purple-
crayon.nedia.mt.edu, nfulu to nfulu.nedia.mt.edu, out to Systens
Pr ogramm ng, cherupakha to cherupakha. media.mt.edu, terml to
terml. media.mt.edu, spot to spot.nmedia.nmt.edu, Peerssa to
Peerssa. nedi a. m t. edu, and groovus_naxi mus to
groovus_maxi mus. nedi a. nmt. edu

Curtis Common (#7813)

I
. | MEDI A | -------- | Library |
/ | E&L Garden| LAB | NE |
/ nw~~| _ I | I
[N I +
I I +_
Medi a W - E Media +
_Ave I~ =\ CURTI S _ Ave__ +_
I * |~~~ COVIVON | +
| | p—_— VA~ [| TechnoRet | +
| | x| % = == ESE Bar & Gill]| +
I I e
| Theater | | _
	_ SSwW. ___SSE ____	Poetry				
Sw			Book	SE Readi ng		
	--------	_Deli_	----------	_Reviews_	---------	_Room__

You see Fountain, BLUEPRI NT#1, BLUEPRI NT#2, Portrait of Frankie, Chain-
Story, and purple frisbee here.

The TechnoRnhetoricians' Bar and Gill (#2132)

A slovenly, confortable hovel where the patrons discuss the rhetorica
i mplications of every little thing, including the shifting dunes of
crunbs and peanut shells that ripple across the floor. No one here is
daunted by triviality.

Qovi ous exits: north to the panopticon, west to Curtis Comon, up to
CWA Qut post, and cafe to RnhetNet Cafe

You see MacXVl, Lou the Bartender, Pony, |socrates, Derrida, toolbox,
Bart hes, and Prof Proj here.

d enn, MC, beckster [New Mamma], sm and Eric are here.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 206

Poet ry Readi ng Room (#6804)

You enter a roombuilt of adobe shaped into thick walls and rounded
surfaces. A fire of pinon [sic] and cypress burns and crackles in one
corner. Navajo rugs cover the floor and walls. There are benches
built into the walls. Pillows and cushi ons of various sizes, enough
for everyone, are scattered on the floor and benches.

On a bookshelf near the fire is a note explaining the room <l ook note>
and sonme enpty poetry journals <look journal s> waiting to be used.

You see Hymm to Mercury and a fez here.

Obvious exits: west to Moon and out to Curtis Conmon

Li brary Foyer (#4298)

This is the entrance (and center) of the Medi aMOO CGeneric Library. It
| ooks very library-like indeed, with a brightly lit interior and many
directions in which to go.

Qobvi ous exits: west to Library (roomof Things), north to Library (room
of Roons), east to Library (roomof Player O asses), south to Library
(room of Features), lab to The E& Garden, and up to Medi aMXO Politica
HQ

You see Sign about Library Policy, Library Comments board, and transfer
here.

The E&L Garden (#11)

The Epi stenol ogy and Learning G oup garden is a happy junble of little
and big conputers, papers, coffee cups, and stray pieces of LEGO

Qovi ous exits: library to Library Foyer, atriumto Third Floor Atrium
Landi ng, and comon to Curtis Conmon

You see a newspaper, a Warhol print, Sun SPARCstation IPC, Projects
chal kboard, Research Directory, Constructionist Flag, and Train
Transfer here.

Third Floor Atrium Landi ng (#93)

The hal I way here opens up into a four-story atrium You are on the
third floor. Over the railing and across the atrium you see a nura

of grey squares with colored |ines between them

Gobvi ous exits: lego to The E&L Garden, cw to VisMd Hal I way, ccw to E&L
Hal | way, stairs to Third-floor Stairwell, elevator to elevator, and
kitchen to Media Lab Kitchen

You see an elevator call button and Map of Media Lab here.

El evat or (#332)

You are inside the Media Lab elevator. The walls are dull steel and
the floor is grey rubber with raised circular bunps. You see push
buttons labeled LL, G 2, 3, 4, Roof, and 6. The floor indicator shows
3. The elevator is stopped and the doors are open

CObvious exits: elevator to el evator

Si xth-floor Atrium (#182)
A mst-filled space. The topology of this floor is unclear

Qobvious exits: library to The Library, down to Media Lab Roof, alumto
Al umi Hal I way, south to Ballroom Foyer, and elevator to el evator

You see an elevator call button here.

ENTITIES
Map of Media Lab (#10001) is owned by N nja_Librarian (#1751).

© Anna Cicognani, September 1998, PhD Thesis, Appendices 207

Aliases: Mp of Media Lab and map
MAP OF THE MEDI A LAB
Type: read <synbol > on map

Synbol Fl oor

LL Lower Leve
G Ground Fl oor
2 Second Fl oor
3 Third Fl oor
4 Fourth Fl oor
R Roof

6 Si xth Fl oor

If you | eave this room type: read <synbol > on #10001

© Anna Cicognani, September 1998, PhD Thesis, Appendices 208

AlCoreMOO
(aisun2.ai.uga.edu 2357)

Room descriptions: functions, mission statements, few details about the objects and the
environment

Navigation: by cardina points

SAMPLES

Possi bl e Worl ds (#61)

This is the starting point for a virtual community dedicated to the
study and i npl ementati on of Al systens.

A with the historical backdrop of Wiitehead and Russel in their
"Principia Mathenmatica', Goedel's Inconpleteness Theorum opened the way
for a variety of formal nethods: a theory of recursive functions,
turing nmachi nes, |anbda cal culus and even systens for rewiting
strings.

You see Wl cone Sign and Generic Tol d-Text Driven Bot here.

Al Fields down: Virtual R&D Labs
_____ N e
usfl cnptrs W * E undrstndng intl
_____ S e
Li brary

Li brary (#133)

A coll ection of docunents, books, and other reference nmaterials
rel evant to the studi es being conducted at Al Core.

"W can only see a short distance ahead, but we can
see plenty there that needs to be done."
- Alan Turing

You see Mail Distribution Center, noo Qddities, 'Zine Rack, and Elvis
the Li brarian here.

Kat (asleep), cricket (asleep), and edm (asl eep) are here.
Possi bl e Wrl ds down: Vic's Study
Useful conputers N undrstndng intllg
Miseum MetaRoomW * E C Rvw Brd
_____ S [,
Al Core Ontol ogy Studies

Understanding Intelligence (#97)

"Artificial intelligence is the conputer nodeling of human nenta
abilities. W see it as an interdisciplinary field where conputer
science intersects w th phil osophy, psychol ogy, |inguistics,
engi neering, and other fields. "

You see psyBotA, psyBotC, and psyBotB here.
G useppe (asleep) and M nister (asleep) are here.
Virtual _Poetics

© Anna Cicognani, September 1998, PhD Thesis, Appendices 209

Al Fields I

Possible Worlds W * E = -----
Li brary s -

Core Revi ew Board

Useful conputers (#94)
One of the goals of Al research is to inprove the pragmatic utility of
our conputation resources.

Prograns usi ng nmet hods of synbolic conmputation performuseful tasks,
whi ch do exhibit intelligence. An open question renmains as to whether
it is the programis or the programer's

Systens designed to facilitate storage, transfer, and recall of sets of
facts and rel ati ons augnent the user's intelligence. More
sophi sticated tools for graphic visualization of conplex concepts or
defeasible inferencing may allow certain types of intellectual feats
previ ously thought inpossible.
You see News Dat abase and Logi ¢ Graphs and Matri x Al gebra here.
Generic Logic G aph Room
Hyper nedi a N Al Fields
Turing Room W * E Possible Wrlds
Pr gr mmgLnggs S
Li brary

Al Fields (#188)

This is a newy created area of discussion and study . . . perhaps a
di scussion of Artifical [sic] Life, or Mninmally Intelligent Things is
a starting point for this topic.

Everyone is encouraged to ' @lig' whatever field of Al that is of
i nterest.

You see CGeneric 3D Wrld and Conmon Gateway | nterface here.
Worm (asl eep) is here.
Cel | ul ar Aut onat a
Neur al Net wor k N
CASE W * E Lgc Prgrnmng
Useful conputers S wundrstndng intllg
Possi bl e Wrl ds

© Anna Cicognani, September 1998, PhD Thesis, Appendices 210

BioMOO
(http://bioinfo.weizmann.ac.il:8001)

Room descriptions: materials and textures, some architectural descriptions.

Navigation: through a Web interface (BioGate system). Mostly by cardinal points,
sometimes by names of exits. A Web and ASCII map is available.

SAMPLES

The Lounge (#11)

Alarge, silent, dimy illumnated roomwith [ots of people snoring
their real lives away...

A door to the south leads out to the Central Room (type 'south' to
exit the Lounge; onmt the quotes when you enter the comand).

A big sign here reads: Type 'tutorial' to learn the basics of MX, or
if you have a web browser available, type "web' for a web tutorial.

The Central Room (#126)

A very large, circular room its ceiling a transparent donme through
whi ch sunlight streans in.

A large archway | eads west into a foyer.

There are doors leading in all directions, |abelled wth tasteful

si gns.

You see the Research Directory, a public bulletin board, a
Jobs/ Postdocs bulletin

board, a Lost and Found Box, a tour dispenser (td), a statue of a
rodent pointing south to the zoo, and

an ani matroni ¢ rhesus nacaque (rhes).

Qobvi ous exits: west (to the Foyer), north (to the Lounge), northeast
(to the Sem nar Roon), southeast (to the Bio Center Lab Tower Lobby),
northwest (to the BioMOO Central Library), southwest (to the Special
Interest Area (sia)), south (to the Bio Center Ofice Tower Lobby), and
east (to the GCG Hel p Desk).

The Bio Center O fice Tower Lobby (#3558)

You are in the bottomof a cylindrical tower that stretches up well
beyond your sight. The floor and walls of the tower are paneled with
white marbl e. Randomly spaced along the walls are bal coni es | eadi ng
into offices (which you can reach using the office directory you see
here).

The fl oor is conposed of circular disks, each two neters in dianeter,
that wobble slightly as you step on them

A door to the north leads into the Central Room Another to the south
| eads out onto the Bio Center Lawn.

You see an Ofice Directory and a sign.

Gobvi ous exits: north (to the Central Roon) and south (to the Bio Center
Lawn) .

© Anna Cicognani, September 1998, PhD Thesis, Appendices 211

The Bio Center Lawn (#312)

An expanse of greenery. You see patches of colourful flower beds and

hear the drone of bees.

The turf rolls easily fromthe Biological Center southwards to a calm
| ake.

To the west you can see sone woods. To the east, you see the entrance
to the ZOO grounds, and faraway, a

river flows placidly.

Nobody el se is here.

Qobvi ous exits: west (to the woods), south (to the shore of the |ake),
east (to the Zoo Gate), northwest (to the Canmpus Garden), and north (to
the Bio Center Ofice Tower Lobby).

The Bi oMXO Central Library (#633)

A vast octagonal room whose entire north side is a | arge panelled

wi ndow | ooki ng north. Angled parts of the walls near the ceiling and
floor give the inpression of facets.

The roomis dominated by a spiral staircase in its center, |eading down
to the generic objects display area, and up to the audi ovi sual center.
Doors are set into each wall, but only three are open.

A door to the south opens to the Bi oMOO MOO Ref erences room one to the
west enters the Biology Shelves, and one to the southeast |eads back to
the Central Room

You see a table covered with sheets of paper, a sign, a map, and a
Users directory

(ud).
Nobody el se is here.

Gobvi ous exits: southeast (to the Central Roon), down (to the Generic
hjects Display area), up (to the AudioVisual Center), south (to
Bi oMOO MOO Ref erences), and west (to the Biol ogy Shel ves).

ENTITIES

The tabl e covered with sheets of paper (#2044)

A rectangul ar table covered with pages. The nice lettering on them
invites you to read...

1 - Norm Journal Cubs on the Bi oMOO Panphel et
2 - B gato: Note on gramar

3 - david: On Objects(0O

4 - nouse: Note for new users

© Anna Cicognani, September 1998, PhD Thesis, Appendices 212

PennMOO
(ccat.sas.upenn.edu: 7777)

Room descriptions: descriptions of theinside are of agood level of detail. Instructions on

how to use the room and its contents are gives.

Navigation: through cardinal point, names of exits, elevator, map. An ASCII map is
available, some directories of rooms, and a command “ways’ which gives the possible
directions.

SAMPLES

Virtual Apartnment (#2133)
This 24'x24' roomneeds to be decorated. The walls are covered with a
wal | paper of pink tulips and green | eaves on a soft yell ow background.
You are invited to turn this roominto a livable and wel com ng
apartnent. You may add furniture to this roomby witing descriptions
of appropriate furniture. Furniture can also be renoved if
i nappropriate. This is your virtual apartnent, so be creative! You may
add or renove furniture by typing these commands and foll owi ng the
directions:

addf urn <name of thing>

rnfurn <nanme of thing>
You see picture, Air conditioner, Study Desk, chair, sofa, flower,
plant, cd player, cd's, nore cd's, bed, refrigerator, conputer
tel evi sion, books, cd player, poet's chair, souvenir, stereo,
m crowave, chai se | ongue, narbl e-topped coffee table, and doily.

You see Yell ow Lanp and bagel .

Fara's Basement (#1539)

It's a slightly musty basenent, with bright fluorescent lights shining
down on a pile of stuff. Al sorts of stuff. It seens that Fara is
pl anning to have a yard sale, or maybe she just likes to save things
whi ch m ght be useful soneday.

If you would like to add to this pile of stuff, type--> addfurn <nane
of thing> <--and follow directions.

You see Big Table, Baby Chair, bike, gloves, PC, Redskins hel net,

| oveseat, AMEX bill box, tricycle, china, Recliner, bulkpack, rose,
Post Card, mniature red corvette, a notebook conmputer, flowers, tent,
old sleeping bag, and books.

You see ol d boonbox.

Locust Sem nar Room (#268)

You are in a large conference room set up with three clusters of
chairs for small group discussions. People seated at one of these
clusters can talk to each other without being heard in the rest of the
room People standing can talk to the entire room

You see red chairs, blue couches, and yellow table.

Furness Library (#295)

© Anna Cicognani, September 1998, PhD Thesis, Appendices

213

An el aborate hundred-year-old building of red sandstone, in the Queen
Anne eclectic style. Nanmed for its architect Frank Furness, this is a
pl ace both to explore, and to make use of noo and internet l|ibrary
resour ces.

The library is still under construction, but please | ook around.
You see PennMOO ki osk here.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 214

APPENDIX D. Virtual Campus examples

Designer Class

Severa classes of players are available in the Virtua Campus. Each class allows characters
to access special commands, only available to that class and offspring. To explain the
implementation of the designer class of player, | need to introduce afew technical details
about how the player hierarchy is actually defined.

In the Virtual Campus, the hierarchy of registered characters, or players, is (as displayed by
the command @classes generics):

generic player (#6)
Ceneric Ml Receiving Player (#91)
Frand’' s pl ayer class (#90)
generic builder (#4)
generic progranmmer (#57)
generic desi gner (#575)
generic adm ni strator (#56)

A generic administrator can access all the commands attributed to the previous classes
(designer, programmer, builder, and so on).

A generic builder (#4), and its offspring, can build new entities, starting from existing ones,

with the command:

@reate <parent> named <new obj ect >

where <par ent > stands for the original entity that is being cloned (eg. a note, #9) and <new
obj ect > is the name of the referent (eg. banner).

Programmers can use al the commands available to builders, plus they can change, add and
remove verbs and properties of virtual entities. They can therefore change, add and remove
activities and reactions, and change the referent of an object by modifying its description,
help text, and other related information.

The designer class has been introduced to assign a set of commands, or Design Speech
Acts, to users who wanted to experiment design in the MOO. The designer class assigns

© Anna Cicognani, September 1998, PhD Thesis, Appendices 215

special features to users belonging to it, and it represents a simple way to gather under one
class al the users who are experimenting design in the MOO.

Users belonging to the class of designers, can:

use all the commands available to the parent classes (for example, to builders and
programmers);

create new objects using Design Speech Acts;

access a specia entity design studio;

use DSAsto modify activities and reactions;

participate to a MOO discussion forum regarding design issues (the list *designers);

interrogate the MOO database regarding entity (A, R, Ref);

add specia featuresto their own entities.

Designers can access verbs and properties directly (eg. with the @r ogr amor @r op
commands), using Design Speech Acts, and within the Design Sudio, an editor that
facilitates design operations.

This classis an attempt to define the designer role within the Virtual Campus, by defining a
set of DSAS, special entities, and procedures (eg. entering the Design Studio to design), in

accordance with the architecture of the environment and the software structure. The (A, R,
Ref) model provides information for the implementation of these DSAS, entities, and
procedures.

Design Speech Acts

Following the DSAs aready implemented (and completed) in the Virtual Campus.

#4. @sketch
#4: @ket ch any none any

1:
2.

"@ket ch <prototype> <newnanme>";
"This command sel ects froma prototype of a room and asks a

series of questions.";

3:

"A set of prototypes nust be used for the verb to work. It creates

a new room sketched, with parent ($prototype). Find the prototypes in
$bui | der. prot ot ypes.";

4:

9:
10:
11:
12:

set _task_perms(pl ayer);
nargs = length(args);
if (largs)
pl ayer:tell ("Usage: @ketch <prototype> <nanme>");
player:tell ("To see a list of prototypes, type: @rototypes");
return;
el seif ('args[2..nargs])
pl ayer:tell ("You nust enter a nane for the new room");
while ((newoom = $comand_utils:read()) == "")

© Anna Cicognani, September 1998, PhD Thesis, Appendices 216

13: pl ayer:tell ("Pl ease, enter a name for your new room");
14: endwhi | e

15: else
16: new oom = $string_utils:fromlist(args[2..nargs], " ");
17: endif

18: prototype = args[1];
19: if (!(prototype in this.prototypes))

20: pl ayer:tell ("You have to name a specific prototype to sketch
from");

21: pl ayer:tell ("Type @rototypes to see what's available.");

22: return;

23: endif

24: if (instr = $comrand_utils:yes_or_no("Do you want to read the

i nstruction on @ketch?"))

25: descr = {$hel p: get _topic(" @ketch", $help)};

26: pl ayer:tell _Iines(@lescr);

27: endif

28: player.location: announce(pl ayer. nane, " begins @ketching ",
newoom " as ", $string_ utils:a or_an(prototype[2]), " ", prototype, "
area.");

29: player:tell ("You begin @ketching ", newroom " as "
$string_utils:a _or_an(prototype[2]), " ", prototype, " area.");

30: "Here the questions start”;

31: correct = "no"

32: while (correct[1] !'="y")

33: player:tell ("Type in a description for this ", prototype, "
area:");

34: description = {@conmrand_utils:read_lines()};

35: player:tell ("What alias would you like to use for this area?
(leave empty if none)");

36: aka = $command_utils:read();

37: pl ayer:tell ("Type in the nane of the exit from",

pl ayer.l ocation.nane, " to ", new oonj;

38: if (!aka)

39: aka = new oom

40: endi f

41: while ((exit = $command_utils:read()) =="")

42: player:tell ("You must enter a name for the exit.");

43: endwhi | e

44 parent = player: ny_natch_obj ect (prototype);

45: if (parent == $fail ed_natch)

46: player:tell ("Sorry, this prototype, ", prototype, ", has not
been defined yet.");

47: return;

48: endi f

49: " End of questions, now confirm?";

50: pl ayer:tell ("You have defined the basic information for your "
newoom ". Here is the information you have entered:");

51: player:tell ("Name: ", newwoom ", with alias ", aka);

52: pl ayer:tell ("Parent/prototype: ", prototype, "(", parent, ")");
53: player:tell ("Exit from", player.location.name, " to ", new oom
oM, exit);

54. pl ayer:tell ("Description:");

55: pl ayer:tell _|ines(description);

56: player:tell("lIs this information correct? (yes or no)");

© Anna Cicognani, September 1998, PhD Thesis, Appendices 217

57: correct = $command_utils:read();

58: endwhile

59: " Now create it!";

60: new = player:_create(parent);

61: new name = new oomn

62: new aliases = {aka};

63:. " Partially copied from#4: @ig."

64: do_recreate = !player:build_option("bi_create");

65: to_ok = $building_utils:make_exit(exit, player.location, new,
do_recreate, $exit);

66: fromok = $building_utils:make_exit("out", new, player.location
do_recreate, $exit);

67: " Room and exits have been created."

68: new. description = {@escription};

69: player:tell("You have now a new room ", new, ", naned ",

new. name, " (aka ", @ew aliases, "), and with parent ", prototype,
ek

70: suspend(4);
71: this:teleport(player, new;
72: if ($inproved in $object_utils:ancestors(parent))

73: pl ayer:tell ("");

74. pl ayer:tell ("The details here are:");

75: message = player.location:list_details();

76: pl ayer:tell (@ressage);

77: details = parent.details;

78: for det in[1l..length(details)]

79: detail = new match_detail (details[det][1], 1);
80: pl ayer:tell ("");

81: player:tell ("Detail: ", details[det][1]);

82: if (answer = $command_utils:yes_or_no("Do you want to renove
this detail ?"))

83: new. details = parent:remdetail (new, detail);
84: endi f

85: endf or

86: endif

87: suspend(4);

88: player:tell("");

89: "Does the player want to clone objects fromthe $prototype?”
90: contents = parent.contents;

91: if (contents)

92: pl ayer:tell ("The ", prototype, " prototype you have chosen
contai ns sone special objects, that you can clone.");

93: for ain [1l..length(contents)]

94. player:tell ("Qoject: ", contents[a].nanme, "(", contents[a],
"))

95: if (answer = $conmand_utils:yes_or_no("Do you want to clone
this object?"))

96: newobj = player: _create(contents[a]);

97: if (newobj == E_PERM

98: player:tell ("Sorry, the object doesn't seemto be
fertile.");

99: el se

100: newobj . name = tostr(contents[a].nanme, "_clone");

101: pl ayer:tell ("You have a clone of ", contents[a], ", with
nunber ", newobj, ", naned ", newobj.nanme, ".");

© Anna Cicognani, September 1998, PhD Thesis, Appendices 218

102: nove(newobj, player.location);

103: endi f

104: endi f

105: endf or

106: pl ayer:tell ("You can renanme your objects with ' @enane <object>
to <new_nane>'.");

107: endif

108: player:tell("");

109: player:tell("");

110: player:tell ($string_utils:center(" SKETCH FI NI SHED ",
pl ayer.linelen, "-"));

111: "Last nodified Fri Jun 5 15:31:55 1998 EST by Creeper
(#101@vi rtual _Canpus).";

#184: @copydetail

#184: @opyd*et ai | any (at/to) any

1. "Usage: @opyd*etail <detail> to <room";

2: "Create a copy of <detail> in a newroom which has anong its
parents, at |east, the inproved room"

3"

4: "Only the owner or a wizard can copy the details in a room";

5. if (!$permutils:control s(player, this))

6: return player:tell (this:no_pernms_nsg() || "You are not allowed
to do that here.");

7: endif

8: if (!'dobjstr || !'iobjstr)

9: return player:tell ("Usage: ", verb, " <detail> to <roone");
10: elseif (!(source = this:match_detail (dobjstr)))

11: return player:tell ("There is no detail by that name (", dobjstr,
"))

12: endif

13: to_room = toobj(iobjstr);
14: nust_be = #184;
15: if (!$object _utils:isa(to_room nust_be))

16: pl ayer:tell (" The roomyou are copying the detail to nust be a
child of, at least, ", must_be.narme, "(", nust_be, ").");

17: return;

18: endif

19: nanes = $building_utils:parse_nanmes(dobjstr);
20: dnanes = $list_utils:remve_duplicates({nanes[1], @anes[2]});

21: if (detail = to_roommatch_detail (dnanes[1]))

22: if (dnanes[1l] in to_roomdetails[detail])

23: return player:tell ("There al ready appears to be a detai
called \"", dnanes[1], "\" in ", to_roomnane, ".");

24: endi f

25: endif

26: if (typeof(to_roomdetails) != LIST)

27: player:tell ("*** Cannot add detail -- details list is corrupted!
***");

28: return player:tell ("type '"@o ", to_room "' and '@ix here' to
correct this problem");

29: endif

30: copied = this:copydetail (this, to_room dnanes);
31: if (!copied)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 219

32: player:tell ("Mm for some reasons | don't seemto be able

to copy that detail.");

33: return;

34: endif

35: player:tell("Detail \"", this.detail s[source][1],
copied, ", to ", to_roomnane, ".");

"\" copied as ",

36: player:tell ("Please, check the detail you have copied carefully.
You nay need to add sone properties and/or verbs needed by the detail

to performspecific actions.");

37: "Last nodified Fri Jun 5 13:39:33 1998 EST by Creeper

(#101@irtual _Canpus).";

#575: @copyobject

#575: @opyob*j ects none none none

1. "Does the player want to clone objects fromthe $prototype?"
2. parent = $office;

3: contents = parent.contents;

4: for ain [1..length(contents)]

5: player:tell ("Cbject: ", contents[a], contents[a].nane);

6 player:tell ("Do you want to clone this?");

7 answer = $command_utils:read();

8: if (answer == "yes")

9: newobj = player: _create(contents[a]);

10: newobj . nane = tostr(contents[a].nanme, "_clone");

11: pl ayer:tell ("You have a clone of ", contents[a], ", wth
nunber ", newobj, ", naned ", newobj.nanme, ".");

12: endi f

13: endfor

#575:copy_object
#575: copy_obj ect this none this

1: "Copies an object to a new one, as a clone."
2: "Returns the nunber of the cloned object."
3: source = args[1];

4: player:tell("source: ", source);

5: new = player: _create(source);

6: player:tell (new;

7: return new

#4: @prototypes

#4: @r ot o*t ypes none none none
1. set_task_perms(player);

2: player:tell("Available prototypes for the @ketch command are:");
3: player:tell _lines($string utils:english_list(player.prototypes, 4)

£

4: "lLast nodified Fri Jun 5 15:38:45 1998 EST by Creeper

(#101@irtual _Canpus).";

#213: @addfurniture
#213: @ddf ur*niture any any any

© Anna Cicognani, September 1998, PhD Thesis, Appendices

220

1. if (this:is_authorized(player))

2: if (argstr)

3: if (this:is_furniture(argstr))

4: player:tell ("Sorry, there is already sonething here by that
nane. ") ;

5: return;

6: endi f

7 pl ayer:tell ("Pl ease describe ", argstr, ".");

8 descrip = $command_utils:read();

9: s = $comand_utils:yes_or_no("ls this object sittable? ");

10: if (s)

11: player:tell ("Type in a self-nmessage for when a person sits
down. ") ;

12: player:tell (" Exanple: \"You sit down at the % and nmake
yourself confortable.\" (% wll get substituted with ", argstr, ").");
13: sit = $comrand_utils:read();

14: player:tell ("Type in a public message for when a person sits
down. ") ;

15: player:tell (" Exanple: \"% sits down at the %.\" (% wll
get substituted with the sitter and % with ", argstr, ").");

16: osit = $command_utils:read();

17: player:tell ("Type in a self-nmessage for when a person stands
up.");

18: player:tell (" Exanple: \"You rise fromthe % and stretch.\"
(% will get substituted with ", argstr, ").");

19: stand = $command_utils:read();

20: player:tell ("Type in a public nmessage for when the player
stands up.");

21: player:tell (" Exanple: \"% rises fromthe %.\" (% will
get substituted with the sitter and % with ", argstr, ").");

22: ostand = $command_util s:read();

23: player:tell ("Type in a nessage for the room s description
when people are sitting on ", argstr, ".");

24. player:tell (" Exanple: \"%rowd %s sitting at %.\" (%rowd
will get substituted with the people sitting there, %s with either
\"is\" or \"are\" and % with ", argstr, ").");

25: sitting = $command_utils:read();

26: s = {sit, osit, stand, ostand, sitting};

27: el se

28: s = {};

29: endi f

30: this.furniture = {@his.furniture, {argstr, {}, {}, descrip,
st}

31: t hi s: announce_al | (pl ayer.nane, " sets up a ", argstr, " in the
room");

32: el se

33: player:tell ("To add a new object you nust give it a nane:
"@ddfurniture <name>'");

34: endi f

35: endif

36: "Last nodified Fri Jun 5 15:44:25 1998 EST by Creeper
(#101@irtual _Canpus).";

#213: @rmfurniture
#213: @nfur*niture any any any

© Anna Cicognani, September 1998, PhD Thesis, Appendices 221

1. if (this:is_authorized(player))

2: if (largstr)

3: pl ayer:tell ("To renpbve sonet hing you nust nane it:
"@nfurniture <name>'");

4: return;

5: endi f

6: if (found = this:is_furniture(argstr))

7: t hi s: announce_al | (pl ayer. nane, " renoves ",
this.furniture[found][1], ".");

8: this.furniture = listdelete(this.furniture, found);
9: el se

10: player:tell ("Sorry, there is no furniture here by that
name.");

11: endi f

12: endif

13: "Last nodified Fri Jun 5 15:46:45 1998 EST by Creeper
(#101@irtual _Canpus).";

Area Prototypes

Following the area prototypes designed in the Virtual Campus. Some verbs and properties

of these prototypes, have been inherited from parent entities, programmed by other MOO

users. Authors of verbs maintain their copyright, as signalled by the last line of the verb. If

an author’s name is not present, the verb should be considered part of the original
LambdaCore Database.

Pprivate

@rchive #434 with verbs and properties
----- Begi nni ng of @rchive #434

@reate #206 named Private Room Prototype, private

. #434. ("htnl _desc_dmsgs") = {0, 0, 0, 0, 0, 0, 0, 0O, O}

; #434. ("detail s") = {{"filing cabinet"}, {"trees"}, {"fountain"},

{"table"}, {"clock"}, {"other chairs", "chairs"}, {"wi ndow'}, {"owner's
desk", "desk"}, {"owner's chair", "chair"}}

; #434. ("desc_dnsgs") = {0, {"*call*", "tree_growth"}, "A spring of coo
water is coming out fromit.", 0, {"*call*", "clockface"}, {"These
chairs are for the guests of this office.", "Please, sit on one."},
{"*call*", "wi ndow_| ook"}, "Just the owner's desk.", 0}

; #434. ("t ake_f ail ed_dnsgs") = {0, 0, O, O, O, 0, 0, 0, O}
; #434. ("ot ake_fail ed_dnmsgs") = {0, 0, 0, 0, 0, 0, 0, 0, 0}
; #434. ("seats") = {0, 0, O, O, 0, 10, O, 1, 1}

s #434. ("sitting") = {}

; #434. ("sitting_seats") = {}

; #434. ("capacity") = {20, 0, O, 2, 0, 0, O, O, 0}

; #434. ("contai ned") = {}

; #434. ("contai ning_detail s") = {}

; #434. ("sit _dnsgs") = {0, 0, O, 0, 0, O, O, O, 0O}

; #434. ("osi t _dnsgs") = {0, O, O, O, 0, O, O, O, 0O}

; #434. ("sit _failed_dmsgs") = {0, 0, 0, 0, O, O, O, 0, O}
; #434. ("osit _failed_dnsgs") = {0, 0, O, O, O, O, 0, O, O}

© Anna Cicognani, September 1998, PhD Thesis, Appendices

222

; #434. (" st and_dnsgs") = {0, O, 0, 0, 0, O, O, O, 0O}

; #434. (" ostand_dnsgs") = {0, 0, O, O, O, O, O, O, 0O}

; #434. ("sitting_dnsgs") = {0, 0, 0, 0, O, O, O, 0, O}

; #434. (" put _dnsgs") = {0, 0, O, 0, 0, O, O, O, 0O}

; #434. (" oput _dnsgs") = {0, O, O, 0, 0, O, O, O, 0}

; #434. ("put _fail ed_dnmsgs") = {0, 0, 0, 0, O, O, O, 0, O}
; #434. ("oput _fail ed_dnsgs") = {0, 0, O, O, O, O, 0, 0O, O}
; #434. (" get _dnsgs") = {0, O, O, 0, 0, O, O, O, 0O}
; #434. (" oget _dnsgs") = {0, O, O, O, 0O, O, O, O, 0O}
; #434. ("get _fail ed_dmsgs") = {0, 0, 0, 0, 0, 0, 0, 0, 0O}
; #434. (" oget _fail ed_dnsgs") = {0, O, O, O, O, O, O, O, O}
; #434. (" cont ai ned_dnsgs") = {0, 0, O, O, O, O, O, 0O, 0}

; #434. ("hel p_nsg") = "Under construction."

; #434. ("t ouch_dnsgs") = {0, 0, 0, 0, O, O, O, "It's cold.", "It's
marble, pretty cold. "}

; #434. ("ot ouch_dnsgs") = {0, 0, 0, 0, 0, O, O, O, 0O}

; #434. ("snel | _dmsgs") = {0, O, O, O, O, O, O, "It snells like glass
polisher.", 0}

; #434. ("osnel | _dnsgs") = {0, O, O, 0, O, O, O, O, 0O}

; #434. ("listen_dnmsgs") = {0, 0, 0, 0, 0, 0, 0, "You can hear sone
noi ses...", 0}

; #434. ("ol i sten_dnsgs") = {0, 0, 0, 0, O, O, O, 0, O}

; #434. ("taste_dnmegs") = {0, "It's a mnty flavour.", "N ce, clear
fresh.", "Nice, clear, and fresh.", 0, 0, 0, "YUUUUUWW ", 0}

; #434. ("ot aste_dnsgs") = {0, O, O, O, O, O, O, O, 0O}

; #434. (" opened_cont ai ners") = {0, 0, 0, O, O, O, O, O, O}
; #434. ("invi si bl e_contents") = {0, 0, 0, 0, 0, 0, 0, 0, 0}
; #434. (" open_dnsgs") = {0, 0, O, O, O, O, O, O, O}

; #434. (" oopen_dnsgs") = {0, O, O, O, O, O, O, O, O}

; #434. (" cl ose_dnsgs") = {0, O, O, O, O, O, O, O, O}

; #434. (" ocl ose_dnsgs") = {0, O, O, O, O, O, O, O, 0O}

; #434. (" open_fail ed_dnsgs") = {0, O, O, O, O, O, O, O, O}
; #434. (" oopen_fail ed_dnmsgs") = {0, 0, 0, 0, 0, 0, 0, 0, 0O}
; #434. ("cl ose_fail ed_dnmsgs") = {0, 0, 0, 0, 0, 0, 0, 0, 0}
; #434. (" ocl ose_fail ed_dnsgs") = {0, 0, 0, 0, 0, 0, O, 0O, 0O}
; #434. (" opened_dnsgs") = {0, 0, O, O, O, O, O, O, 0O}

; #434. (" cl osed_dnsgs") = {0, 0, O, O, O, O, O, O, 0}
; #434. ("edi ting_buffer") =""

; #434. ("editing") = {1, "desc_dnsgs"}

; #434. ("hel p") = {#434}

; #434. ("entrances") = {#890}

; #434. (" bl essed_object") = #-1

; #434. (" bl essed_t ask") = 440512195

; #434. ("exits") = {#447, #8809}

;#434. ("invited') = {}

0
0

© Anna Cicognani, September 1998, PhD Thesis, Appendices

223

; #434. ("instruction") = {"", "$PRI VATE area prototype", "--------------
----------------------------- ", "This set of instructions is the
default for the prototype $private.”, "You can edit your instructions
once you have @ketched a new roomw th this parent, by typing ' @dit

<your _roonp. i NStruction' .M, M---mo oo

-", "A Private Area Prototype has the followi ng details:", "- the
owner's chair; a confortable chair where the owner of the room can
rest;", "- the owner's desk;", "- other chairs; you can set how many by

typing: @ets chair is <nunber>", a wi ndow;, this |ooks over a room
you designate (type: @i ndow is <roonk, where <roonr i s where you want
the wi ndow to | ook). Type 'l ook window to see who is in the room on
the other side of the wi ndow The roomwhere the wi ndow is | ooking at,
is stored in the <roomr.w ndow target. You can change that with

"@v ndow is <roomtarget>'.", "- a fountain;", "- sone trees; try 'look
trees';", "- atable;", "- afiling cabinet;", "- a clock; to read the
time type 'look clock';", "", "NOTE: To copy a detail fromone roomto

another, try @opydetail (see help details and @opydetail for nore

i nformation)."}

; #434. ("prototype") = #434

; #434. ("key") = 0

; #434. ("al i ases") = {"Private Room Prototype", "private"}

; #434. ("description") = {"This roomis to be used as a prototype for
private areas, such as offices, studios and workshops, other personal
roons.", "Type: @nstr here, to see howto use this room", "You see
the owner's chair, and the owner's desk against the wall, on it a

cl ock, a wi ndow whi ch | ooks outside, sonewhere in another MOO room and
sonme other chairs around a table, a filing cabinet where to put your
docunents.”, "In a corner, in a place which seens another dinmension

you see a fountain under some trees."}

; #434. (" obj ect _si ze") = {11614, 896774413}

; #434. ("web_cal I s") = 99

; #434. ("1 ast _nodi fi ed") 895819643

; #434. ("creati on_date") 874047675

@rop #434."w ndow_| ook" {"From the w ndow you see "} "rc
@rop #434."w ndow_target" #61 "rc"

@rop #434."tree_height" 6 "rc"

@erb #434:"w ndow_| ook" any any any "rxd"

@r og #434: wi ndow_| ook

"Looks into the target window (to_roon), and gets a |list of contents."
source = player.location;

to_room = source.w ndow_t ar get;

cnanmes = $string_utils:nane_and_nunber _|ist(to_roomcontents);

nessage = tostr(@ource.w ndow_| ook, "[watching ", to_room nane, ", ",
to_room "]: ", cnanmes, ".");

return nessage;

@erb #434:" @V ndow' none is any "rx"
@rog #434: @v ndow
"Sets the roomwhere the wi ndow is |ooking at.";
target = toobj(player.|ocation.w ndow target);
room = target.nane;
newt arget = toobj (args[2]);
if (largs[2])
pl ayer:tell ("Usage: @ ndow i s <new ar get>");

© Anna Cicognani, September 1998, PhD Thesis, Appendices 224

pl ayer:tell ("Your wi ndow actually watches ", room " (", target,
"))
return;
endi f
if (tvalid(newtarget) || !'($roomin
$obj ect _utils:ancestors(new arget)))
pl ayer:notify(tostr(newarget, " doesn't look like a roomto

ne..."));
return;
endi f
pl ayer. | ocati on. w ndow_t arget = new arget;
pl ayer:tell ("Ok. You are now watching ", newtarget.nane, " (",

newtarget, ").");
"Creeper fecit on Mon Sep 15 20:48:16 1997 EST";

@erb #434:"tree_growth" this none this "rxd"
@rog #434:tree_growth

"Called by the trees details. Returns a nessage with the increased
hei ght of the trees."

height = this.tree_height = this.tree_height + 1;
i f (height > 10000)
hei ght = this.tree_height = 1;
endi f
player:tell ("You see a group of trees about ", height, "cmtall.");
return;

@erb #434:"hel p_nsg" this none this "rxd"

@r og #434: hel p_nsg

“I'n progress. To be rewitten when the prototpyes becone unified.";
return;

"Last nodified Fri My 22 16:47:23 1998 EST by Creeper
(#101@i rtual _Canpus).";

@erb #434:"init_for_core" this none this "rx"

@rog #434:init_for_core

"Copi ed from The System Cbject (#0):init_for_core by Adm nistrator (#2)
Fri Jun 5 15:35:08 1998 EST";

if (caller_perns().w zard)

pass();

if ("server_started" in verbs(this))
code = {"callers() || ($last_restart_tine =tine());"};
set _verb_code(this, "server_started", code);

endi f

if ("name_l| ookup_failed" in verbs(this))
del ete_verb(this, "name_|l ookup_failed");
endi f
if ("uptinme_since" in verbs(this))
del ete_verb(this, "uptine_since");
endi f
if ("do_comand"” in verbs(this))
del ete_verb(this, "do_command");
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 225

$shut down_nessage = "";

$shut down_tine = 0;

$dunp_i nterval = 3600;

$gri pe_reci pients = {player};

$class_registry = {{"generics", "Generic objects intended for use as

the parents of new objects", {$room S$exit, $thing, $note, $letter
$cont ai ner, $root_cl ass, $player, $prog, $wiz, $generic_editor

$mai |l _recipient, $nmail _agent}}, {"utilities", "Qbjects holding usefu

gener al - pur pose verbs", {$string utils, $gender utils, $trig utils,
$time_utils, $match_utils, $object_utils, $lock_utils, $list_utils,
$command_utils, $code_utils, $permutils, $building_utils}}};

set _verb_code(this, "user_connected", verb_code(this,
"user _connected(core)"));

del ete_verb(this, "user_connected(core)");
endi f

----- End of @rchive #434

$social
@rchive #213 with verbs and properties
----- Begi nni ng of @rchive #213

@reate #206 named Soci al Area Prototype

; #213. ("hel p_nmsg") = {"This room can be extended to be filled with
at nosphere, in a literal sense."}

; #213. ("hel p") = {#214, #209, #207, #205}

; #213. ("entrances") = {#289, #690}

; #213. ("bl essed_object") = #-1

; #213. (" bl essed_t ask") = 619805556

; #213. ("exits") = {#527, #236, #208}

; #213. ("key") = 0

; #213. ("aliases") = {"Social Area Prototype"}

; #213. ("description') = {"This is the prototype for a social area,
where peopl e neet, chat and gather, for no reasons.", "Type

"@nstruction here' to read the instructions on howto use this room"}

; #213. (" obj ect _si ze") = {45733, 896601613}
; #213. ("web_cal I s") = 12

© Anna Cicognani, September 1998, PhD Thesis, Appendices

226

; #213. ("about _text")

= {"The Generic Lively Room (#213) offers a nunber

of options that allow users to create specific atnospheres within them

These " at nbospheres
generic with simlar functionality,
at nospher e,
nessages that are displayed in the room
generic the fashion in which this happens and how it
be controlled to a great extend.",

are referred to as " anbi ent noi se'
which pretty nmuch says it all. An
according to this interpretation, consists of anbient

In the case of this room

is triggered, can

""", "Beyond that, it offers

custoni zation of the nessages that get displayed when a user connects

or disconnects or when disconnected user gets “carried off'

new nessages whi ch can be displayed to users entering,
connecting or di sconnecti ng.
after which the @nter or

| eavi ng,
The room owner(s) may al so set the del ay

del ay after which a disconnected user gets carried off.", "", "Most of

the roons functionality roots back to three generics:
the Generic Inmproved Roomwith Bells and Whistles
(#206) and the CGeneric Self O eaning Room (#208).
T @bout #184',
sai d generics.", ,

| nproved Room (#184),

the Generic

Pl ease consul t
" @bout #206', and "~ @bout #208' to find out nore about
"', "For nore information read " help #213' and

docunentation referred to withinit."}
("last_nodified") = 896405392

; #213.

@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop

#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.

"on2" O "r"

"active" 0 "r"

"queue2" #215 "r"

"mpde" 1 "r"

“triggers" {"enterfunc", "confunc"} "r"
“random range" {30, 300} "r"

“random nessages” {} "rc"

“random counters" {} "r"

“scripts" {} "r"

“script_counters" {} "r"

“ent er _nsg_del ay"
"exit_mnsg_del ay"

10 "r"
10 "r"

"sl eeper _carry_off_delay" 300 "r"
"enter_nsg" "" "rc"

"exit_msg" "" "rc"

"connect _nsg" "" "rc"

"oconnect _nsg" "" "rc"

"di sconnect _nsg" "" "rc"

"odi sconnect _nmsg" "" "rc"

"sl eeper _carry_off_nsg" "" "rc"
"sl eeper _drop_off _nmsg" "" "rc"

“fixed_script"

"no_say_nsg" "You struggle to speak but your words are | ost

r

in the hushed silence of the room"

@rop

#213.

resi stance

@rop

#213.

are futile

@rop
@rop
@rop
@rop
@rop
@rop
@rop
@rop

#213.
#213.
#213.
#213.
#213.
#213.
#213.
#213.

"no_enote_nsg" "You struggle to nove but a strong inner

keeps you still.

"no_commun_nsg" "Your efforts to express yourself to others

in this hushed s

"door _cl osed_nsg" "Sorry,
"oopen_nsg" "% opens the door to %.'
"open_nsg" "You open the door.'
"ocl ose_nsg" "% cl oses the door to %.'
“cl ose_nsg" "You cl ose the door.

"session" 0 "r"

“lying_around_nsg" "You see ¥stuff.’

"attach_hush" 0 "

"

| ence. "

re

© Anna Cicognani, September 1998, PhD Thesis, Appendices

"pg"

"pg"

the door to %

"ot

"pg"

is closed."

rc

on anot her room

i ntroduces

@xit nmessages are displayed to a user or the

227

@rop #213."furniture_nsg" "You see %stuff." "rc
@erb #213:"start" this none this "rx"
@rog #213:start
if (!$permutils:controls(caller_perns(), this))
return E_PERM
endi f
if (!this.active && this.on2)
fork (0)
t hi s: announce_at nosphere();
t hi s. queue2: add(t hi s);
endf or k
this.active = 1;
endi f
"Last nodified Mon May 6 21:39:38 1996 EDT by U f (#238@uU_Mai nMOO).";

@erb #213:"stop" this none this "rx"
@rog #213:stop
if (!$permutils:controls(caller_perns(), this))
return E_PERM
endi f
if (task = $list_utils:assoc(this, this.queue2.queue))
fork (0)
t hi s. queue2: renove(this);
endf or k
endi f
this.active = 0;
"Last nodified Sun Sep 24 14:59:14 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:"keep_going" this none this "rxd"

@rog #213: keep_goi ng

return this.active ? this.active =

$set _utils:intersection(this.contents, connected_players()) 2 1| O
0;

"Last nodified Sun Sep 24 14:59:23 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:"lively_delay" this none this "rxd"
@rog #213:1ively_del ay
node = this. node;
if (mde in {1, 2, 3, 4})
return this.randomrange[1] + randon(this.randomrange[2] -
t hi s. random range[1]);

el sei f (nmobde == 5)
lens = length(this.scripts);
if (!this.script_counters || length(this.script_counters) < 2 |
I'this.script_counters[2])
this.script_counters = {this.scripts[i = randon{lens)][1],
$list_utils:range(l, length(this.scripts[i][2]))};
el se

i = $list_utils:iassoc(this.script_counters[1], this.scripts);

© Anna Cicognani, September 1998, PhD Thesis, Appendices 228

endi f
delay = this.scripts[i][2][this.script_counters[2][1]];
if (what = tonum(del ay))

this.script_counters[2] = listdelete(this.script_counters[2], 1);
endi f
return what;
el sei f (nmode == 6)
if (!'this.script_counters)
this.script_counters = {this.scripts[this.fixed_script || 1],
$list_utils:range(l, length(this.scripts[this.fixed_script || 1][2]))};

el seif (!this.script_counters[2])
i = $list_utils:iassoc(this.script_counters[1], this.scripts);
this.script_counters[2] = $list_utils:range(1
length(this.scripts[i][2]));
endi f
delay = this.scripts[this.fixed_script ||
11[2][this.script_counters[2][1]];
if (what = tonum(del ay))
this.script_counters[2] = listdelete(this.script_counters[2], 1);
endi f
return what;
endi f
"Last nodified Mon May 6 22:32:05 1996 EDT by U f (#238@U_Mai nMXO) . ";

@erb #213:"announce_at nosphere” this none this "rxd"
@r og #213: announce_at nosphere
if (!$permutils:controls(caller_perns(), this))
return E_PERM
endi f
if (!$string_utils:is_numeric(what = this:retrieve_nsg()))
t hi s: announce_al | (what);
endi f
"Last nodified Mon May 6 21:39:30 1996 EDT by U f (#238@WuU_Mai nMOO).";

@erb #213:"retrieve_neg" this none this
@rog #213:retrieve_nsg
node = this. node;
if (mode == 1)
if (!this.random nessages)
neg = "Notice: % is set to nbde 1, eventhough there are no

random nessages avail able. Type "“hel p random nmessages' for nore
i nformation.";

rx

el se
nsg = this.random nessages[randon(l engt h(this.random nessages))];
endi f
el sei f (nmode == 2)
if (!this.random nessages)
neg = "Notice: 9% is set to nbde 2, eventhough there are no

random nessages avail able. Type "“hel p random nmessages' for nore
i nformation.";

el se
if (!'this.random counters)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 229

this.random counters = $list_utils:range(1l, len
| engt h(t hi s. random nessages)) ;

el se
len = I ength(this.random counters);
endi f
nsg = this.random nessages[this.randomcounters[i = randon(len)]];
this.random counters = |listdel ete(this.randomcounters, i);
endi f
el sei f (nmode == 3)

if ('this.scripts)
nseg = "Notice: 9% is set to random2 script node (node 3),
event hough there are no scripts available. Type “help lively-index
for nmore information."

el se
lens = length(this.scripts);
i = randon{l ens);
if (len = length(this.scripts[i][2]))
neg = this.scripts[i][2][random(len)];

el se
neg = tostr("Notice: % is set to random2 script node (node 3);
anyhow, the ", this.scripts[i][1l], " script seens to be enpty. Type
“help lively-index' for nore information.");
endi f
endi f
el sei f (nmode == 4)
if ('this.scripts)
nsg = "Notice: 9% is set to random script node (node 4),

event hough there are no scripts available. Type “help lively-index
for nmore information."

el se
lens = length(this.scripts);
if (Ithis.script_counters || !this.script_counters[2])

this.script_counters = {this.scripts[x = randon{lens)][1],
$list_utils:range(l, length(this.scripts[x][2]))};
i = X;
el se
i = $list_utils:iassoc(this.script_counters[1], this.scripts);
endi f
if (len = length(this.script_counters[2]))
neg = this.scripts[i][2][this.script_counters[2][] =
randonm(len)]];

this.script_counters[2] = listdelete(this.script_counters[2], j);
el se
neg = tostr("Notice: 9% is set to random script node (node 4);
anyhow, the ", this.scripts[i][1], " script seens to be enpty. Type
“help lively-index' for nore information.");
endi f
endi f
el sei f (nmode == 5)
if ('this.scripts)
neg = "Notice: 9% is set to random sequential script node (node

5), eventhough there are no scripts available. Type “help lively-
i ndex' for nore information."

el se
lens = length(this.scripts);

© Anna Cicognani, September 1998, PhD Thesis, Appendices 230

if (Ithis.script_counters || length(this.script_counters) < 2 |
I'this.script_counters[2])

this.script_counters = {this.scripts[x = randon(lens)][1],
$list_utils:range(l, length(this.scripts[x][2]))};
i = X;
el se
i = $list_utils:iassoc(this.script_counters[1], this.scripts);
endi f
neg = this.scripts[i][2][this.script_counters[2][1]];
if (!$string_utils:is_numeric(nsg))

this.script_counters[2] = listdelete(this.script_counters[2], 1);
endi f
endi f
el sei f (nmode == 6)
if ('this.scripts)
nseg = "Notice: 9% is set to fixed sequential script node (node 6),

event hough there are no scripts available. Type “help lively-index
for nmore information."

el se
if (!'this.script_counters)
this.script_counters = {this.scripts[this.fixed_script || 1][1],
$list_utils:range(l, length(this.scripts[this.fixed_script || 1][2]))};
elseif (length(this.script_counters) < 2 |
I'this.script_counters[2])
this.script_counters[2] = $list_utils:range(1,
I ength(this.scripts[this.script_counters[1]][2]));
endi f
nmeg = this.scripts[this.fixed_script |
11[2][this.script_counters[2][1]];
if (!$string_utils:is_numeric(nsg))
this.script_counters[2] = listdelete(this.script_counters[2], 1);
endi f
endi f
endi f
return $string_ utils:pronoun_sub(nsg);
"Last nodified Mon May 6 22:26:33 1996 EDT by U f (#238@U_Mai nMXO) . ";

@erb #213:"enterfunc" this none this "rxd"
@rog #213:enterfunc
pass(@ir gs);
if (is_player(who = args[1]))
if (msg = this:enter_nsg())
fork (this.enter_nsg_del ay)
if (who.location == this)
who:tell (nsQ);
endi f
endf or k
endi f
if ($list_utils:find_prefix(verb, this.triggers))
this:start();
endi f
endi f

"Last nodified Sun Cct 29 13:04:31 1995 EST by U f (#238@U_Mo-
East).";

© Anna Cicognani, September 1998, PhD Thesis, Appendices 231

@erb #213:"exitfunc" this none this "rxd"
@rog #213: exitfunc
pass(@irgs);
if (is_player(who = args[1]))
if (msg = this:exit_nsg())
fork (this.exit_nsg_del ay)
if (who.location != this)
who:tell (nsQ);
endi f
endf or k
endi f
if ('this:keep_going())
this:stop();
endi f
endi f

"Last nodified Sun Cct 29 13:04:41 1995 EST by U f (#238@U_Mo-
East).";

@erb #213:"confunc" this none this "rxd"

@rog #213: confunc

pass(@irgs);

if ($list_utils:find_prefix(verb, this.triggers))
this:start();

endi f

"Last nodified Sun Sep 24 15:00:58 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:"announce_connection” this none this "rxd"
@r og #213: announce_connecti on

t hi s: announce(thi s: oconnect _msg() || tostr(player.nane, " has
connected. ")) ;

if (msg = this:connect_nsg())
pl ayer:tell (nsq);
endi f

"Last nodified Sun Sep 24 15:01:09 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:"di sfunc" this none this "rxd"
@rog #213:di sfunc

if (!$recycler:valid(player.hone) || !$object_utils:isa(player.hone,
$roon)

pl ayer. home = $pl ayer_start;
endi f

fork (delay = this.sleeper_carry_off_del ay)
if (valid(player) && !(player in connected _players()) &&

pl ayer.last _connect tinme + delay < tine() & this != player. hone &%
pl ayer.l ocation != player. hone)
fork (0)
"forked to protected fromerrors in the player's :noveto verb.";
if (player.location != player.hone)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 232

move(pl ayer, $linbo);
endi f
endf or k
start = player.location;
pl ayer: novet o(pl ayer. hone) ;

if (player.location != start && start.announce_cl ear)
start:announce(this:sleeper_carry_off_nsg() || tostr("Assistants
of the local psychology institute arrive to cart ", player.nane, " off
to their dreamresearch labs."));
endi f
if (player.location == player. hone &&
pl ayer .| ocati on. announce_cl ear)
pl ayer. hone: announce(thi s: sl eeper_drop_off_nsg() || tostr("Sone
assi stants pass by to drop off a sleeping ", player.nanme, ", who just
took part in sone reveali ng REM phase experinments."));
endi f
endi f
endf or k
t hi s: announce(thi s: odi sconnect _nmsg() || tostr(player.name, " has

di sconnected. ")) ;
if (msg = this:disconnect_nsg())
pl ayer:tell (nmsg);

endi f

if ('this:keep_going())
this:stop();

endi f

"Last nodified Sun Sep 24 15:01:21 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:"enter_nsg exit_nsg connect_nsg oconnect _nmsg di sconnect _nsg
odi sconnect _nsg sl eeper_carry_off_nsg sl eeper_drop_of f_nsg" this none
this "rx"

@rog #213:enter_nsg

return $string_utils:pronoun_sub(this.(verb));

"Last nodified Sun Jan 28 22:37:10 1996 EST by U f (#238@U_Mai nMXO).";

@erb #213:"get _section" this none this "rxd"
@rog #213: get_section

what = this:parse_section(args[1]);

result = E_|I NVARG

if (typeof(what) == ERR)

pl ayer:tell ("Error: ", what, "'");
pl ayer:tell ("Usage: @dit detail");
pl ayer:tell (" @dit message on|for detail");
pl ayer:tell (" @dit here|detail [| nessage]");
pl ayer:tell (" @dit script");

return result;
sei f (typeof (what) == LI ST)
d = this:match_detail (what[1]);
if (d == $failed_nmatch)
$comand_util s: object _match_failed(d, what[1]);
el seif (d == $anbi guous_mat ch)
player:tell ("I don't know which \"", what[1], "\" you nean.");

e

© Anna Cicognani, September 1998, PhD Thesis, Appendices 233

el se
match = what[2] + "_dnsgs"
if (!(index = match in $object_utils:all_properties(this)))
player:tell ("There is no @, what[2], " detail-nessage to be
set.");
pl ayer:tell ("Type \"@m®essages ", this.details[d][1], " all\" to
see the conplete list of messages.");
el se
result = this.(match)[d] || "";
endi f
endi f
el se
if (script = $list_utils:assoc(what, this.scripts))
result = script[2];
el se
player:tell ("Error: ", E_I NVARG;
endi f
endi f
return result;
"Last nodified Thu Apr 25 16:16: 00 1996 EDT by U f (#238@U_Mai nMXO).";

@erb #213:"set_section" this none this "rxd"
@rog #213:set_section
if (!(caller in {$section_editor, this}) ||
I'$permutils:control s(player, this))
return E_PERM
endi f
what = this:parse_section(args[1]);
if (typeof(what) == LIST)
source = args[?2];
d = this:match_detail (what[1]);
if (d == $failed_nmatch)
pl ayer:tell ("COCops, the detail you are editing is gone all of a
sudden! ") ;
el seif (d == $anbi guous_mat ch)
pl ayer:tell ("CQops, the detail you are editing suddenly produces an
anbi guous match! | don't know which \"", what[1], "\" you nean.");
el se
match = what[2] + "_dnsgs"
if (!(index = match in $object_utils:all_properties(this)))
pl ayer:tell ("Cops, there is no @, what[2], " detail-nessage to
be set.");
player:tell ("Type \"@m®essages ", this.details[d][1], " all\" to
see the conplete list of messages.");
el se
this.(match)[d] = source
endi f
endi f
el se
if (index = $list_utils:iassoc(what, this.scripts))
this.scripts[index][2] = args[2];
el se
player:tell ("Error: ", E_I NVARG;
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 234

endi f
this.last_nodified = tinme();
"Last nodified Thu Apr 25 17:34:20 1996 EDT by U f (#238@U_Mai nMXO).";

@erb #213:"section_nsg" this none this "rxd"
@rog #213: section_nsg

what = this:parse_section(args[1]);

if (typeof(what) == LIST)

if (what[2] == "desc")
return tostr("the description of the ", what[1], "' detail");
el se
return tostr("the @, what[2], " nessage of the ", what[1], "'
detail");
endi f
el sei f (typeof (what) == STR)
return tostr("the ", what, "' script");
el se
return "???";
endi f

"Last nodified Thu Apr 25 17:41:46 1996 EDT by U f (#238@WU_Mai nMOO). ";

@erb #213:" @t no*sphere” any any any "rd"
@rog #213: @t nosphere

"Usage: @tno*sphere [on|off]";

" Turns on/ of f roont at nosphere. "

if (!$permutils:controls(player, this))

return player:tell (this:no_perms_msg() || "You may not do that here,
sorry.");
endi f
com= $string_utils:trimlargstr);
if (com
if (comin {"on", "yes", "1"})
if (this.on2)
return player:tell ("The atnosphere for ", this.nanme, " is already
activated.");
endi f

this.on2 = 1;
this:start();

elseif (comin {"off", "no", "0"})
if (!'this.on2)
return player:tell ("The atnosphere for ", this.nanme, " is already
deactivated.");
endi f
this.on2 = 0;
this:stop();
el se
player:tell (E_INVARG "; Usage: @tno*sphere [on|off]");
endi f
endi f
pl ayer:tell (" The atnosphere for ", this.name, " is ", tostr(args ? "now
"l ""), "turned ", this.on2 ? "on." | "off.");

if (this.on2 && !args)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 235

when = 0;
if (entry = $list_utils:assoc(this, this.queue2.queue))
when = entry[2];

endi f
i f (when)
left = when - time();
player:tell ("Next event in ", $string utils:fromseconds(left), "
(", ctime(when)[12..19], " ", ctime(when)[26..28], ")");
el se

pl ayer:tell ("There seens to be no next event schedul ed,
currently.");
endi f
endi f

"Last nodified Sun Sep 24 16:08:08 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:" @dd-script" any to this "rd"
@rog #213: @dd-scri pt
if (!$permutils:controls(player, this))

return player:tell (this:no_perms_msg() || "You may not do that here,
sorry.");
endi f
script = dobjstr;
if (!script)
return player:tell ("Usage: ", verb, " <script-name>to ", iobjstr);

elseif ($list_utils:assoc(script, this.scripts))
return player:tell ("There already seens to be a script by that nane
(", script, "), sorry.");

endi f

this.scripts = listappend(this.scripts, {script, {}});

pl ayer:tell ("You add a script called *", script, "' to ", this.nane,
")

if ($command_utils:yes_or_no("Wuld you like to edit this script
now?"))

$section_editor:invoke(tostr(tostr(this), "||", script), "@dit");
el se

pl ayer:tell (" Done.");
endi f

"Last nodified Thu Apr 25 17:58:50 1996 EDT by U f (#238@WU_Mai nMOO). ";

@erb #213:"@enove-script" any fromthis "rd"
@rog #213: @enove-scri pt
if (!$permutils:controls(player, this))

return player:tell (this:no_perms_msg() || "You may not do that here,
sorry.");
endi f
script = dobjstr;
if (!script)
return player:tell("Usage: ", verb, " <script-name> from",

i objstr);
elseif (!(index = $list_utils:iassoc(script, this.scripts)))

return player:tell ("There doesn't seemto be a script by that name
(", script, "), sorry.");

© Anna Cicognani, September 1998, PhD Thesis, Appendices 236

el seif (!'$command_utils:yes_or_no(tostr("Are you sure you want to

renove ~", script, "'?")))
return player:tell ("OK, aborted.");

endi f

this.scripts = listdelete(this.scripts, index);

pl ayer:tell ("You delete the script called ", script, "' from",
this.nane, ".");

"Last nodified Mon Sep 25 14:57:23 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:" @cripts" this none none "rd"
@rog #213: @cripts
if (!$permutils:controls(player, this))

return player:tell (this:no_perms_msg() || "You may not do that here,
sorry.");
endi f
if ('this.scripts)
pl ayer:tell ("No scripts for ", $string_utils:nn(this), ".");
el se

scripts = {};
for script in (this.scripts)

scripts = |listappend(scripts, tostr(script[1], " [",
I ength(script[2]), " lines]"));
endf or
pl ayer:tell ("The scripts for ", $string_utils:nn(this), ": ",
$string_utils:english_list(scripts), ".");
endi f

"Last nodified Mon May 6 18:00:48 1996 EDT by U f (#238@WU_Mai nMOO). ";

@erb #213:"@nterval s @auses" this any any "rx
@rog #213: @nterval s
if (!$permutils:controls(player, this))
return player:tell (this:no_perms_msg() || "You may not do that here,
sorry.");
elseif (!(prepstr in {"", "from'}) || (prepstr && !iobjstr))
pl ayer:tell ("Usage: ", verb, " ", dobjstr, " from<mn> to <max>");
elseif (!prepstr &% !iobjstr)
range = this.randomrange;
pl ayer:tell ("Random pauses range from", range[l], " to ", range[2],
" seconds.");
el se
range = $string utils:words(iobjstr);
if ((len = length(range)) < 2)
if (i = index(range[l], "-") && (len2 = length(range[l])) > i &&
= 1)
from=range[1][1l..i - 1];
to = range[1][i + 1..len2];
elseif (i = index(range[1l], "..") && (len2 = length(range[l])) >
+1 &0 1=1)
from=range[1l][1l..i - 1];
to = range[1][i + 2..len2];
el se

© Anna Cicognani, September 1998, PhD Thesis, Appendices 237

return player:tell ("Usage: , verb, , dobjstr, " from <m n>
to <max>");
endi f
elseif (len == 3 & range[2] == "to")
from= range[1];
to = range[3];

endi f
if (!'$string_utils:is_numeric(from || !'$string_utils:is_nuneric(to))
return player:tell ("Usage: ", verb, " ", dobjstr, " from<mn>to

<max>");

endi f

from= tonum(fronj;
to = tonun(to);
if (from> to)
player:tell (E_INVARG "; from", from " to ", to, "? (backwards
range)");
endi f
this.randomrange = {from to};

pl ayer:tell ("Random pauses will now range from", from " to ", to, "
seconds. ") ;
endi f

"Last nodified Tue Sep 26 16:44:05 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:"@ctivity*-nodes" this is any "rd"
@rog #213: @ctivity-nodes
if (!$permutils:controls(player, this))
return player:tell (this:no_perms_msg() || "You may not do that here,
sorry.");
elseif (!iobjstr)
node = this. node;
pl ayer:tell ($string_utils:nn(this),

is currently set to display ",

node == 1 ? "random pauses and random nmessages" | (mpde == 2 ? "random
pauses and random y sequenced nessages” | (node == 3 ? "random pauses
and random nmessages pi cked fromscripts" | (nmode == 4 ? "randonly

pi cked scripts with random sequence and timng" | (nbde == 5 ?
"random y picked scripts with script-extracted timng" | "fixed scripts
with script-extracted tinmng")))), " (node ", node, ").");

pl ayer:tell();
player:tell ("The following activity-nodes are currently available:");
pl ayer:tell();
player:tell (" node 1: random pauses and random nessages");
player:tell (" node 2: random pauses and randonmy sequenced
nessages");
if (this.scripts)
player:tell (" node 3: random pauses and random nessages pi cked
fromscripts");
player:tell (" node 4: randomy picked scripts with random
sequence and timng");
player:tell (" node 5: randomy picked scripts with script-
extracted sequence and timng");
player:tell (" node 6: fixed scripts with script-extracted
sequence and timng");
endi f
pl ayer:tell();

© Anna Cicognani, September 1998, PhD Thesis, Appendices 238

elseif (!'$string_utils:is_nuneric(iobjstr))

pl ayer:tell ("Usage: ", verb, " ", dobjstr, " is <npde>");
elseif (!((nmbde = tonun(iobjstr)) in {1, 2, 3, 4, 5, 6}))

pl ayer:tell ("Usage: ", verb, " ", dobjstr, " is <npde>");

pl ayer:tell (" nmodes 1, 2, 3, 4, 5, and 6 are available.");
el sei f (this.nbde == node)

player:tell ($string_utils:nn(this), " is already in node ", node,
")
el se

t hi s. node = node;

pl ayer:tell ("You set ", $string utils:nn(this), " to display ", node
== 1 ? "random pauses and random nessages” | (nmode == 2 ? "random
pauses and randomy sequenced nessages” | (node == 3 ? "random pauses
and random nmessages pi cked fromscripts" | (nmobde == 4 ? "randonly
pi cked scripts with random sequence and timng" | (nbde == 5 ?
“random y picked scripts with script-extracted sequence and tim ng"
"fixed scripts with script-extracted sequence and tinmng")))), ".");
endi f

"Last nodified Tue May 7 19:39:31 1996 EDT by U f (#238@U_Mai nMOO).";

@erb #213:"@rigger*s" this is any "rd"
@rog #213: @riggers

"Usage: @rigger here is <trigger>"

" @rigger here is !<trigger>";
if (!$permutils:controls(player, this))

return player:tell (this:no_perms_msg() || "You may not do that here,
sorry.");
endi f
if (liobjstr)

triggers = this.triggers;

source = {{"enterfunc", "people entering"}, {"confunc", "people

connecting into"}};
source2 = source;
if (triggers)
for t in (triggers)
player:tell ($string_utils:nn(this),

gets triggered by ", (s =

$list_utils:assoc(t, source))[2], " it (", s[1], ").");
source2 = setrenove(source2, s);
endf or
endi f

if (source2)
pl ayer:tell();
pl ayer:tell (" Cher triggers:");
pl ayer:tell();
for s in (source2)
pl ayer:tell (" ", s[1], "': ", s[2], " the room");
endf or
pl ayer:tell();
endi f
el se
triggers = $string_utils:words(iobjstr);
for t in (triggers)
rm= 0;

if (t[1] in {"!", "-"})

© Anna Cicognani, September 1998, PhD Thesis, Appendices 239

if ((len =1length(t)) < 2)

pl ayer:tell ("™ ", t, "' - ?2");
el se
t =t[2..len];
rm= 1,
endi f
endi f
if (index(t, "enter") || index(t, "con"))
what = index(t, "enter") ? "enterfunc" | "confunc"
if (rm

if (what in this.triggers)
this.triggers = setrenove(this.triggers, what);

pl ayer:tell ("You renove the ", what, "' atnobsphere
trigger.");
el se
player:tell ("*", what, "' is not a trigger currently.");
endi f
el se
if (what in this.triggers)
player:tell ("*", what, "' is already a trigger.");
el se
this.triggers = setadd(this.triggers, what);
player:tell ("You add ", what, "' as an atnobsphere
trigger.");
endi f
endi f
el se
pl ayer:tell ("™ ", t, "' - ?2");
endi f
endf or
endi f

"Last nodified Wed Sep 27 13:01:09 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:" @i xed-script" this is any "rd"
@rog #213: @i xed-scri pt
if (!$permutils:controls(player, this))

return player:tell (this:no_perms_msg() || "You may not do that here,
sorry.");
endi f
if (liobjstr)

player:tell (tostr(this.fixed_script ? tostr("The current fixed script
for ", $string_utils:nn(this), " is: ",
this.scripts[this.fixed_script][1], ".") |
tostr($string_utils:nn(this), " has no current fixed script"”,
tostr(this.scripts ? "* | " and no scripts"), " defined.")));
el se

if (!(script = $list_utils:iassoc(iobjstr, this.scripts)))

player:tell ($string_utils:nn(this), " doesn't have a script by that

name (", iobjstr, ").");
el se
if (this.fixed_script == script)
player:tell ("™ ", iobjstr, "' is alread the fixed script for ",
$string_utils:nn(this), ".");

© Anna Cicognani, September 1998, PhD Thesis, Appendices 240

el se
this.fixed_script = script;
pl ayer:tell ("You set the fixed script of ",
$string_utils:nn(this), " to ", iobjstr, "'.");
endi f
endi f
endi f
"Last nodified Tue May 7 22:16:39 1996 EDT by U f (#238@U_Mai nMXO) . ";

@erb #213:"@nter-delay @xit-delay @arry-off-delay" this is any "rd"
@rog #213: @nter-del ay
if (!$permutils:controls(player, this))

return player:tell (this:no_perms_msg() || "You may not do that here,
sorry.");
endi f
what = tostr(tostr(verb == "@nter-delay” ? "enter_nsg_" | (verb ==
"@xit-delay" ? "exit_msg " | "sleeper_carry_off_")), "delay");
if ('iobjstr)
pl ayer:tell (tostr(what == "enter_nsg_del ay" ? "@nter display del ay:
" | (what == "exit_nsg_delay" ? "@xit display delay: " | "Sleeper
carry off delay: ")), this.(what), " seconds.");
el se
if (!$string_utils:is_numeric(iobjstr))
pl ayer:tell ("Usage: ", verb, " ", dobjstr, " is <nunber of
seconds>");
el se
this.(what) = tonun{iobjstr);
pl ayer:tell ("You set the ", tostr(what == "enter_nsg_del ay" ?
"@nter display delay " | (what == "exit_nsg_delay" ? "@xit display
delay " | "sleeper carry off delay ")), " to ", iobjstr, " seconds.");
endi f
endi f

"Last nodified Wed Sep 27 13:34:03 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:"verbs_for" this none this "rxd"

@rog #213:verbs_for

"Expected argunents: <user> [OBJ], optional verb-location [OBJ]";
"Val ues returned: list of verbs [LIST]";

"Function: returns verbs that <user> has access to."
who = args ? args[1] | player;
if (!$permutils:controls(who, this))
return { @ass(@rgs), @his.data:user_verbs($code utils:verb loc())};
el se
su = $string_utils;
loc = $code_utils:verb_loc();
verbs = {};
for v in (verbs(loc))
$comrand_uti |l s: suspend_i f _needed(0);
v = su:words(su:strip_chars(v, "*"))[1];
if (verb_args(loc, v) !'= {"this", "none", "this"})
verbs = {@erbs, v};

© Anna Cicognani, September 1998, PhD Thesis, Appendices 241

endi f
endf or

return { @ass(@rgs),

endi f

@er bs};

"Last nodified Thu Oct 12 13:54:43 1995 EDT by U f (#238@U_Mo-

East).";

@erb #213:"chparent _to" this none
@rog #213:chparent_to

if (!$permutils:controls(caller_perns(),

return E_PERM
endi f
if (targs[3])
return;
endi f
data = (rvalue =
rdata = data;
l og = rval ue[2];

pass(@rgs))[1];

this "rxd"

this))

known_parents = $list_utils:slice(this.data.conversion_tables,

if ((loc = $code_utils:verb_loc())
for i

if (known_parents[i] == 10c)

i n known_parents)
in [1..1ength(known_parents)]

$comand_util s: suspend_i f _needed(0);

table = this.data.conversion_

tables[i][3];

for itemin (data)
$comrand_uti | s: suspend_i f _needed(0);
if (itenf1] in table[1])
rdata = setrenove(rdata, iten);
log = {@o0g, tostr("LOST: ", iten{1], "' (value
$string utils:print(what.(itenf1])), ")")};
elseif (itenf1] in table[2])
this.(itenf1]) = iteni2];
rdata = setrenove(rdata, iten);
log = {@o0g, tostr("CONV(1): ", itenmf1], "'")};
elseif (found = $list_utils:assoc(iten]{1], table[3]))
this.(found[2]) = itenf?2]
data = setrenove(rdata, item;
log = {@o0g, tostr("CONV(2): ", itenmf1], "'")};
elseif (itenf1] in table[4])
endi f
endf or
if (log !'= rvalue[2])
pl ayer:tell (" Conversion of ",
$string_utils:nn(this.data.conversion_tables[i][1]), " data");
player:tell (" to ",
$string_utils:nn(this.data.conversion_tables[i][2]), " data
conpl eted. ");
endi f
endi f
endf or
endi f
if (caller == this)

return {rdata, |og};

© Anna Cicognani, September 1998, PhD Thesis, Appendices

2);

242

el se

this.data.conversion_logs = {{this, tine(), player, |og},
@ hi s. dat a. conversi on_| ogs};

pl ayer:tell ("Room conversion conpleted.");
endi f

"Last nodified Tue Cct 17 11:06:18 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:"edit_huh" this none this "rxd"
@rog #213: edit_huh
if ((result = pass(@rgs)) == E_|I NVARG
what = $string_utils:words(args[1]);
if (what & $list_utils:assoc(key = what[1], this.scripts))
elseif (what && (len = length(what[1])) > 7 & what[1l][len - 6..]en]

== "-script")
key = what[1][1..len - 7];
el se
key = "";
endi f
result = key ? {$section_editor, tostr("here", "||", key)} | result;
endi f

return result;
"Last nodified Fri May 10 12:01: 08 1996 EDT by U f (#238@uU_Mii nMOO .";

@erb #213:"parse_section" this none this "rxd"
@rog #213: parse_section
if ((result = pass(@rgs)) == E_|I NVARG

what = args[1];

Il en = | ength(what);

if (what[1] == "|" && len > 1)
result = what[2..len];
endi f
endi f

return result;
"Last nodified Thu Apr 25 16:15:40 1996 EDT by U f (#238@uU_Mii nMOO .";

@erb #213:"init_for_core" this none this "rx
@rog #213:init_for_core

"Copi ed from Soci al Area Prototype (#631):init_for_core by
Administrator (#2) Fri May 29 09:04:30 1998 EST";

"Copi ed from The System Cbject (#0):init_for_core by Adm nistrator (#2)
Thu Sep 25 09:57:10 1997 EST";

if (caller_perns().w zard)

pass();

if ("server_started" in verbs(this))
code = {"callers() || ($last_restart_tine =tinme());"};
set _verb_code(this, "server_started", code);

endi f

if ("name_l ookup_failed" in verbs(this))
del ete_verb(this, "name_l ookup_failed");
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 243

if ("uptinme_since" in verbs(this))
del ete_verb(this, "uptinme_since");
endi f
if ("do_command" in verbs(this))
del ete_verb(this, "do_comand");

endi f

$shut down_nessage = "";

$shut down_tine = 0;

$dunp_i nterval = 3600;

$gripe_recipients = {player};

$class_registry = {{"generics", "CGeneric objects intended for use as
the parents of new objects", {$room S$exit, $thing, $note, $letter
$cont ai ner, $root_class, $player, $prog, $wiz, $generic_editor
$mai |l _recipient, $mail _agent}}, {"utilities", "Qbjects holding usefu
gener al - pur pose verbs", {$string utils, $gender utils, $trig utils,
$time_utils, $match_utils, $object_utils, $lock utils, $list_utils,
$command_utils, $code_utils, $permutils, $building_utils}}};

set _verb_code(this, "user_connected", verb_code(this,
"user_connected(core)"));

del ete_verb(this, "user_connected(core)");
endi f

@erb #213:"|*ook" any any any "rxd"
@rog #213:1 00k
if (largstr)
pass(@rgs);
el se
if (f =this:is_furniture(dobjstr))
player:tell(this.furniture[f][4]);
folks = setremove(this.furniture[f][2], player);

if (folks)
pl ayer:tell ("Seated at ", this.furniture[f][1], " you see ",
$string utils:title_list(folks), ".");
endi f
stuff = this.furniture[f][3];
if (stuff)
player:tell ("On ", this.furniture[f][1], " you see ",
$string utils:title list(stuff), ".");
endi f
el se
pass(@rgs);
endi f
endi f

@erb #213:"@ddfur*niture" any any any "rd"
@rog #213: @ddfurniture
if (this:is_authorized(player))
if (argstr)
if (this:is_furniture(argstr))
pl ayer:tell ("Sorry, there is already sonething here by that
nane. ") ;
return;
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 244

pl ayer:tell ("Pl ease describe ", argstr, ".");
descrip = $command_utils:read();
s = $command_utils:yes_or_no("ls this object sittable? ");
if (s)
player:tell ("Type in a sel f-nessage for when a person sits
down.");

pl ayer:tell (" Exanple: \"You sit down at the % and nake yourself
confortable.\" (% wll get substituted with ", argstr, ").");

sit = $command_utils:read();

player:tell ("Type in a public nmessage for when a person sits
down. ") ;

player:tell (" Exanple: \"% sits down at the %.\" (% will get
substituted with the sitter and % with ", argstr, ").");
osit = $command_utils:read();
player:tell ("Type in a sel f-nmessage for when a person stands
up.");
player:tell (" Exanple: \"You rise fromthe % and stretch.\" (%
will get substituted with ", argstr, ").");
stand = $command_utils:read();
pl ayer:tell ("Type in a public message for when the player stands
up.");
player:tell (" Exanple: \"% rises fromthe %.\" (% wll get
substituted with the sitter and % with ", argstr, ").");

ostand = $conmmand_utils:read();
player:tell ("Type in a nessage for the room s description when

people are sitting on ", argstr, ".");
pl ayer:tell (" Exanple: \"%rowd %s sitting at %.\" (%rowd will
get substituted with the people sitting there, %s with either \"is\"
or \"are\" and % with ", argstr, ").");
sitting = $command_utils:read();
s = {sit, osit, stand, ostand, sitting};
el se
s = {};
endi f
this.furniture = {@his.furniture, {argstr, {}, {}, descrip, s}};
t hi s: announce_al | (pl ayer. nane, " in the
room");
el se

pl ayer:tell ("To add a new object you nust give it a nane:
"@ddfurniture <name>'");

endi f
endi f

sets up a ", argstr,

@erb #213:"is_furniture" this none this "rxd"
@rog #213:is_furniture
for f in [l .length(this.furniture)]
if (index(this.furniture[f][1], args[1l]) == 1)
return f;
el se
words = $string_utils:words(this.furniture[f][1]);
for word in (words)
if (index(word, args[1]) == 1)
return f
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 245

endf or
endi f
endf or
return O;

@erb #213:"sit" any any any "rxd"
@rog #213:sit
if (f = this:player_| oc(player))
player:tell ("You are already sitting at ", this.furniture[f][1],
")
return;
endi f
n = 0;
if (largstr)
sittables = {};
for nin [l .length(this.furniture)]
if (this.furniture[n][5])
sittables = {@ittables, n};
endi f
endf or
if (sittables)
n = randon(| ength(sittables));
endi f
el se
n =this:is_furniture(argstr);
endi f
if (n)
if (this.furniture[n][5])
if (this.furniture[n][5][2])
t hi s: announce(this:get_seat_nsg(this.furniture[n], "osit"));

el se
t hi s: announce(pl ayer.nanme, " sits down at ",
this.furniture[n][1], ".");
endi f

if (this.furniture[n][5][1])
pl ayer:tell (this:get_seat_nsg(this.furniture[n], "sit"));
el se
player:tell("You sit down at ", this.furniture[n][1], ".");
endi f
this.furniture[n][2] = {@his.furniture[n][2], player}
el se
pl ayer:tell ("Sorry, that is not sonething you can sit on.");
endi f
pl ayer.seat = this;
el se
pass(@rgs);
endi f

"Last nodified Fri My 15 13:22:30 1998 EST by Creeper
(#101@irtual _Canpus).";

@erb #213:"standup" any any any "rxd"
@rog #213: standup

© Anna Cicognani, September 1998, PhD Thesis, Appendices 246

if (f = this:player_| oc(player))
this.furniture[f][2] = setrenove(this.furniture[f][2], player);
if (this.furniture[f][5][4])
t hi s: announce(this:get_seat_nsg(this.furniture[f], "ostand"));
el se
t hi s: announce(pl ayer. nane,
")
endi f
if (this.furniture[f][5][3])
player:tell (this:get_seat _nsg(this.furniture[f], "stand"));

rises from", this.furniture[f][1],

el se
pl ayer:tell ("You stand up.");
endi f
endi f
if (!'f &k caller == player)
pass(@irgs);
endi f

"Last nodified Tue Nov 4 14:04:01 1997 EST by Creeper
(#101@Xey_Campus).";

@erb #213:"player_loc" this none this "rxd"
@rog #213: pl ayer _| oc
“return player location: O for not sitting anyway, else furniture-
nurber";
p = args[1];
furniture = 0;
for f in [l .length(this.furniture)]
if (args[1l] in this.furniture[f][2])
furniture = f
endi f
endf or
return furniture;

@erb #213:"get _seat_nsg" this none this "rxd"

@rog #213: get_seat _nsg

"Return the text of a seat-nessage, performng substitutions.”

here = this;

f =args[1][5];

which = args[2] in {"sit", "osit", "stand", "ostand", "sitting"};

text = $string_utils:substitute(f[which], {{"%", player.nanme}, {"%",
pl ayer.nane}, {"%", here.nane}, {"%", args[1][1]}, {"%rowd",
this:cromd(@rgs)}, {"%s", length(args[1][2]) > 1 |
(length(args[1][2]) == 1 & & player == args[1][2][1]) ? "are" | "is"}},
1);

return $string_utils:pronoun_sub($string_utils:capitalize(text));

@erb #213:"crowd" this none this "rxd"
@rog #213:crowd
cromd = args[1][2];
if ((rest = setrenove(crowd, player)) && player in crowd)
if (length(rest) < 2)
first =" and ";

© Anna Cicognani, September 1998, PhD Thesis, Appendices 247

el se

first =", ";

endi f

text = "you" + first + $string_utils:title list(rest);
el seif (player in crowd)

text = "you";
el se

text = $string_utils:title_list(crowd);
endi f

return text,;

@erb #213:"is_authorized" this none this "rx"
@rog #213:is_authorized

"Copi ed from Soci al Area Prototype (#631):is_authorized by
Administrator (#2) Fri May 29 09:08:18 1998 EST";

"Copi ed from Generic | nproved O assroom (#211):is_authorized by
Admi ni strator (#2) Tue Sep 30 15:02:10 1997 EST";

"Expected argunents: <user> [OBJ], <verb> [STR";
"Val ues returned: TRUE || FALSE";

"Function: decide if <user> is allowed to use <verb>.";

v = this:verb_nane(args[2]);

return $permutils:control s(args[1], this) || args[1] in
this.authorized ? 1 | (v in this.restricted_verbs ? 0| 1);
"Last nodified Mon Jul 31 12:02:09 1995 EDT by U f (#238@U_Mo-
East).";

@erb #213:"1 ook_self" this none this "rxd"
@rog #213:1o00k_sel f
pass(@rgs);
furniture = {};
for t in (this.furniture)
furniture = {@urniture, t[1]};
endf or
if (furniture)
pl ayer:tell ("The furniture here is: ",

$string_utils:english_list(furniture, "nothing", " and a ", ", a ",
"))
endi f
if (f = this:player_| oc(player))

stuff = this.furniture[f][3];

if (stuff)

player:tell ("On ", this.furniture[f][1], " you see ",

$string utils:title list(stuff), ".");

endi f
endi f
sitters = {};
stuff = {};
for f in (this.furniture)

it (f[2])

sitters = {@itters, @[2]};
pl ayer:tell (this:get_seat _nsg(f, "sitting"));
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 248

if (f[3])
stuff = {@tuff, @[3]};
endi f
endf or

@erb #213:"door _cl osed_nsg oopen_nsg open_nsg ocl ose_nsg cl ose_nsg
standi ng_nmsg |yi ng_around_nsg" this none this "rxd"

@rog #213: door _cl osed_nsg
"Return the text of a nessage, perform ng substitutions.";
here = this;
if (args)
bunch = args[1];
el se
bunch = "";
endi f

text = $string_utils:substitute(this.(verb), {{"%", player.nane},
{"%", player.nane}, {"%", here.nane}, {"%rowd", bunch}, {"%stuff",
bunch}}, 1);

return text,;

@erb #213:"@nfur*niture" any any any "rd"
@rog #213: @nfurniture
if (this:is_authorized(player))
if (largstr)
pl ayer:tell ("To renove sonething you nust nane it: '@nfurniture
<name>'");
return;
endi f
if (found = this:is_furniture(argstr))

t hi s: announce_al | (pl ayer. nanme, " renoves "
this.furniture[found][1], ".");
this.furniture = listdelete(this.furniture, found);
el se
player:tell("Sorry, there is no furniture here by that nane.");
endi f
endi f

----- End of @rchive #213

$learning

@rchive #211 with verbs and properties
----- Begi nni ng of @rchive #211

@reate #206 named Learni ng Area Prototype, | earning

; #211. ("htm _desc_dnsgs") = {0, 0, 0, 0, 0, O, O, O, 0, 0O, O}

;#211. ("details") = {{"desk4"}, {"desk5"}, {"teacher desk"}, {"desk3"},
{"desk2"}, {"deskl"}, {"teacher's desk", "desk"}, {"big table",
“table"}, {"blackboard", "board", "bb"}, {"clock"}, {"door"}}

© Anna Cicognani, September 1998, PhD Thesis, Appendices 249

; #211. ("desc_dmsgs") = {0, 0, 0, 0, {"*call*", "clockface"}, 0, "You

see a massive, old desk made fromoak.", "You see a big circular table
in the mddle of the roomand around it alot of chairs.", {"*call*",
"bl ackboard"}, {"*call*", "clockface"}, "You see a white door that is

partially covered by stickers and flyers."}
; #211. ("take_fail ed_dnsgs") = {0, O, O, O, O, O, "The % is too heavy
to nove.", "You can't pick the % up, you can hardly nmove it.", 0, O,
"The % seens well-anchored in its hinges."}

; #211. ("ot ake_fail ed_dmsgs") = {0, 0, 0, O, O, O, O, O, O, O, 0O}

; #211. ("seats") = {2, 2, 1, 2, 2, 2, 1, 20, 0O, O, 0O}

;#211. ("sitting") = {}

;#211. ("sitting_seats") = {}

; #211. ("capacity") = {0, 0, 0, O, 0, 0, 3, 10, O, 0, 0O}

; #211. ("contai ned") = {}

; #211. ("contai ning_details") = {}

;#211. ("sit_dmsgs") = {0, 0, "You sit down at the %.", 0, "You sit
down at the %.", "You sit down at the %.", "You sit down at the %.",
“You sit down at the %.", 0, 0, 0}

;#211. ("osit _dnsgs") = {0, 0, "% %sits> at the %.", 0, "N ¥%<sits>

at the %.", "W %sits> at the %.", "W %sits> down at the %.", "W
%<sits> down at the %.", 0, 0, 0}

;#211. ("sit_failed_dnmsgs") = {0, 0, 0, 0, 0, 0, "You can't sit at the
%.", "You can't sit at the %.", 0, 0, "You can't sit on %."}

;#211. ("osit_failed_dnmsgs") = {0, 0, O, O, O, O, "W %tries> to sit
down at the %.", "9 %tries>to sit at the %.", 0, 0, ""}

; #211. ("stand_dnsgs") = {0, 0, 0, O, O, O, "You stand up fromthe % .",
"You stand up fromthe %.", 0, 0, O}
; #211. ("ostand_dnsgs") = {0, 0, 0, O, O, O, "9 %stands> up fromthe

%.", "N %stands> up fromthe %.", 0, 0, 0}
;#211. ("sitting_dnmsgs") = {0, 0, 0, 0, 0, 0, "% %is> sitting at the
%.", "N %is> sitting at the %.", 0, 0, 0}
; #211. (" put _dnsgs") = {0, 0, 0, 0, O, 0, "You put %l on the %.", "You

put %d on the %.", 0, 0, 0}

; #211. ("oput _dnmsgs") = {0, 0, 0, 0, 0, 0, "9 %puts> % on the %.",
"ON %<puts> % on the %.", 0, 0, O}

;#211. ("put _failed_dnmsgs") = {0, 0, 0, 0, 0, 0, "You can't put %l on

the %.", "You can't put % on the %.", 0, O, "You can't put % on the
% ."}
; #211. ("oput _fail ed_dnmsgs") = {0, 0, 0, O, O, O, "", "", 0O, O, ""}

; #211. ("get _dnsgs") = {0, 0, 0, O, O, O, "You get % fromthe %.",
“You get % fromthe %.", 0, 0, 0}

; #211. ("oget _dnmsgs") = {0, 0, 0, 0, 0, 0, "UN %gets> % fromthe % .",
"ON %<gets> %l fromthe %.", 0, 0, 0}

;#211. ("get _failed_dnmsgs") = {0, 0, 0, 0, 0, 0, "You can't get % from

the %.", "You can't get % fromthe %.", 0, 0, "You can't get % from
the % ."}

; #211. ("oget _fail ed_dnsgs") = {0, 0, 0, O, O, O, "", "", 0O, O, ""}

; #211. ("cont ai ned_dnsgs") = {0, 0, 0, 0, 0, 0, "You see % on top of
the %.", "You see % on top of the %.", 0, 0, 0}

; #211. ("hel p_msg") = ""

; #211. ("touch_dnsgs") = {0, 0, 0, 0, 0, 0, "The surface feels snooth,
yet bunpy.", "You let your hand glide across the snmooth surface of the
table.”, 0, 0, 0}

; #211. ("ot ouch_dnsgs") = {0, 0, O, 0, O, O, O, O, 0, 0, O}

; #211. ("snel | _dnsgs") = {0, 0, 0, O, O, O, "A scent of oak and paper is
all you can make out.", "It snells.. neutral. In fact it doesn't snel

at all.", 0, 0, 0}

; #211. ("osnel | _dnsgs") = {0, O, O, 0, O, O, O, O, O, 0O, O}

© Anna Cicognani, September 1998, PhD Thesis, Appendices 250

; #211. ("listen_dnmegs") = {0, 0, 0, O, O, O, "You hear nothing al so

known as the sound of silence.", "Fortunately it doesn't produce any
sounds.", 0, 0, "On occassion the door creaks when bei ng opened or
cl osed. "}

; #211. ("ol i sten_dnsgs") = {0, 0, 0, 0, O, O, O, O, O, 0O, O}

; #211. ("taste_dnsgs") = {0, 0, 0, O, O, O, "If you were to actually
taste it you'd taste nothing nmuch.", "Wat would you rather do? Put
your tongue on the % or inmagine what it mght taste |ike?", 0, 0, 0}
; #211. ("ot aste_dnsgs") = {0, O, O, 0, O, O, O, O, O, 0O, O}

; #211. (" opened_cont ai ners") = {0, 0, 0, 0, O, O, O, O, O, O, 1}

; #211. ("invisible_contents") = {0, 0, 0, O, O, O, O, O, O, 0O, 0O}

; #211. ("open_dmsgs") = {0, 0, O, O, 0, O, O, O, O, 0, {"*call*",
"open_door", "You open the %."}}

; #211. (" oopen_dnsgs") = {0, 0, 0, O, 0, O, O, O, 0, 0, "9 %opens> the
% ."}

; #211. ("cl ose_dmsgs") = {0, O, O, 0, 0, O, O, O, O, 0, {"*call*",
“close_door", "You close the %."}}

; #211. (" ocl ose_dnsgs") = {0, 0, O, O, O, O, O, O, O, O, "9 %cl oses>
the % ."}

; #211. ("open_fail ed_dnsgs") = {0, 0, O, O, O, O, "You can't open the
%, it has no drawers.", "You can't open the %.", 0, 0, 0}

; #211. (" oopen_fail ed_dnsgs") = {0, O, O, O, O, O, O, O, O, O, 0O}

; #211. ("cl ose_fail ed_dmsgs") = {0, O, O, O, O, O, "You can't close
that, there's nothing that could be closed.", "You can't close the
%.", 0, 0, O}

; #211. ("ocl ose_fail ed_dmsgs") = {0, 0, 0, 0, 0, 0, O, 0, O, O, 0O}

; #211. (" opened_dnsgs") = {0, O, O, O, O, O, O, O, O, O, "The % is
open. "}

; #211. ("cl osed_dmsgs") = {0, 0, O, O, 0, 0, O, O, O, O, "The % is

cl osed. "}

;#211. ("editing_buffer") = {"*call*", "blackboard"}

;#211. ("editing") = {3, "desc_dnsgs"}

; #211. ("data") = #218

;#211. ("generic") = #211

; #211. ("hel p") = {#212, #209, #207, #205}

; #211. ("exits") = {#527, #236, #315}

;#211. ("instruction") = {"The O assroom", ™", M---ommomm
-- , "Please have a seat at the

table.”, "(To sit at the table, type 'sit'.)", "", "Wiile class is in
session, please stay focused and on topic:", "'look bb' to see the
current topics on the blackboard.", "If you wish to have a casua
conversation, go sonewhere else.", "", "If the 'say' command does not
work, try 'speakup'", "or 'su'. For nore detailed instructions, type
"hel p here' ., Mo m e e oo
__________ ", ""}

; #211. ("key") = 0

;#211. ("aliases") = {"Learning Area Prototype", "learning"}

; #211. ("description") = {"This is the prototype for the | earning area.
You will find tools here which help a teacher to give |ectures, or give
tutorials, or any other exchange of information with students.", "You
see several desks (deskl, desk2, desk3, desk4, desk5), all of themfor
two people each.", "Then there is the teacher desk, and a bl ackboard
behind it.", "You can record activity in this roomby selecting a note,
with @ote is ..., and then turning the recording feature on, with
@ecord onjoff.", "A clock on the wall countdowns tine."}

; #211. ("obj ect _si ze") = {65961, 896601613}
; #211. ("web_cal I s") = 58

© Anna Cicognani, September 1998, PhD Thesis, Appendices 251

; #211. ("about _text") = {"The CGeneric | nproved O assroom (#211) all ows
instructors or groups to enulate classroomsettings. A classroomcan
be set up to support different discourse or conversation nodes; you
could build an big auditoriumwhich would resenble a | ecture setting or
you coul d assenbl e a | arge group discussion area in which different
groups can have discourses within the sane room si mul t aneously wit hout
di sturbing one another.", "", "The key to alot of this functionality
lies in the classroom s noderation facilities, which allow classroom
owners and aut horized users of classroons to control the sources of
expression within that room For exanple, an instructor m ght decide
s/he wants all students to use the "to' (directed speech verb) during a
class in session, but not the "empte' verb; the classroomwould allow
her to set it up accordingly. dassroons also allow conversations to
be localized at tables. That neans a classroomin session will cause
things said and enoted at tables to be only heard by others sitting at
that sane table.", "", "Qther features include a special classroom
security that can be switched by sinply opening or closing a door and
that is sensitive to currently held classes (it would admt students of
a class currently set up but not other people). d assroons can be
shared anong a nunber of groups and then set up for individual classes
(which in turn influences the classroomsecurity). There is a sinple
bl ackboard that can be used, a clock and a default conbination of a
teacher's desk and a big table for students. This initial interior
structure can be nodified, of course.”, "", "Miuch of the classroomns
functionality roots back to other generics: the Generic |Inproved Room
(#184), the Ceneric Inproved Roomwi th Bells and Wi stles (#206), and
the Generic Inproved Self O eaning Room (#208). Please consult ~@bout
#184' , ~@bout #206', and "~ @bout #208' to find out nore about said
generics. Al so, when standing in a classroom take a |ook at "help

i ndex'. The roons-index, the bells-index and the self-cleaning-index
all refer to collections of help topics that relate to aforenentioned
generics. To list theses indices type “help <index> (for exanple:
hel p roomindex).", "", "For nore information read "help classroom

i ndex' and docunmentation referred to withinit. Note that this hel p-

index is only available within classroons."}
; #211. ("l ast _nodi fied") = 890864024
@rop #211."restricted_verbs" {"@estrict*ions", "@tifle"

"@uth*orized", "@nvisible*-session", "@ddspeaker-s*eats",
"@ession", "@tat*us", "@kclass", "@ntlass", "@lass*es",
“reg*ister”, "witeb*l ackboard", "eraseb*lackboard"

"cl eanb*l ackboard", "open", "sit"} "r"

@rop #211."al |l owed_sources" {"announce_connection", "disfunc", "sit",
“stand", "@o", "@oin", "hone", "enpte", "writeblackboard",

"erasebl ackboard", "cleanbl ackboard", "open", " @ession"

"“announce_nsg"} "r"

@rop #211."protected_details" {11, 10, 9} "r"
@rop #211."speaker_seats" {7} "r"

@rop #211."cl asses" {} "r"
@rop #211."authorized" {} "r"
@rop #211."session" 0 "r"
@rop #211."current_class" 0 "r
@rop #211."hi de_when_in_session” 0 "r"

@rop #211."door_open" 1 "r"

@rop #211."show door" 1 "r"

@rop #211."nunbered_bb" 1 "r"

@rop #211."bl ackboard" {"hello"} "rc"

@rop #211."restricted_nsg" "You are not allowed to do that." "rc"
@rop #211."bb_enpty_nsg" "The % appears to be freshly w ped - clean
and enpty." "rc"

© Anna Cicognani, September 1998, PhD Thesis, Appendices 252

@rop #211."blank_wite_bb_nsg" "You wipe a clean |ine underneath the
text witten on the %." "rc"

@rop #211."write_bb_nmsg" "You step up the % and scribble onto it."
e

@rop #211."owite_bb _nmsg" "%N steps up to the % and scribbles
sonething onto it." "rc"

@rop #211."erase_bb_nsg" "You step up the % and erase a line. rc"
@rop #211."oerase_bb_nsg" "%\ steps up to the % and erases a line."
P

@rop #211."clean_bb_nsg" "You step up to the % wipe it with a soapy
sponge." "rc"

@rop #211."ocl ean_bb_nsg" "%\ steps up to the % and wipes it with a
soapy sponge." "rc"

@rop #211."hush_nsg" "Shhh, the class is in session. If you wish to
speakup then please do so by typing: su <text>" "rc"

@rop #211."hush_intruder_nsg" "Shhh, % is in session, so don't

di sturb.™ "rc"

@rop #211."session_nsg" " (In Session)" "rc"

@rop #211."session_begi n_nsg" "%\ announces the begi nning of a new
session." "rc"

@rop #211."session_end_nsg" "%\ announces the end of this session.”
npen

@rop #211."devel oper" {"Uf Kastner", "ulf@u.org"} "r"
@rop #211."hush_controllers"” 0 "r"
@rop #211."hi de_occupants" 0 "rc"

@erb #211:"bl ackboard"” this none this "rxd"
@rog #211: bl ackboard

"Expected argunents: detail-index [NUM";
"Val ues returned: bl ackboard text [LIST]";

"Function: returns text stored in the \"blackboard\" property.";
dtnane = this.details[args[1]][1];
Il en = player:linelen();
borders = {$string_utils:center(tostr(" ",
$string_utils: uppercase(dtnanme), " "), len, "="),
$string_utils:space(len, "=")};
i f (this.blackboard)
lines = this. bl ackboard,;
i f (this.nunbered_bb)
for i in [l .length(lines)]
lines[i] =tostr(i, ") ", this.blackboard[i]);
endf or
endi f
lines = listinsert(lines, borders[1], 1);
lines = |istappend(lines, borders[2]);
if ((c =callers()) & "html" in $list_utils:slice(c, 2))
lines = {"<PRE>", @ines, "</PRE>"};
endi f
el se
lines = {this.bb_enpty nsg};
endi f
return |lines;
"Last nodified Thu Nov 2 23:53:37 1995 EST by U f (#238@U_Mo-
East).";

© Anna Cicognani, September 1998, PhD Thesis, Appendices 253

@erb #211:"witeb*l ackboard writebb wbb" any any any "rd"

@rog #211:witebl ackboard
"Usage: witeb*lackboard <text>";
"Append <text> to the witing on the bl ackboard."
if (!'this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());
el se
this. bl ackboard = {@hi s. bl ackboard, argstr};
if (argstr)
if (index = player in this.sitting)

seat = this.details[this.sitting_seats[index]][1];

this:stand();
el se

seat = 0;
endi f
player:tell(this:wite_bb _nmsg());
if (meg = this:owite_bb_msg())

t hi s: announce(nsg) ;

endi f
if (seat)
argstr = seat;
this:sit();
endi f
el se
player:tell (this:blank_wite_bb nmsg());
endi f
endi f

"Last nodified Sun Jul 30 22:47:27 1995 EDT by Uf (#238@U_Mo-

East).";

@erb #211:"eraseb*| ackboard erasebb ebb" any none none "rd"

@rog #211: erasebl ackboard
"Usage: eraseb*lackboard <line-nunber>";
"Erase the <line-nunber>th line on the bl ackboard."
if ('this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());
el se
line = $code_utils:tonum dobjstr);
if ('typeof(line) == NUM
return player:tell ("Usage: ", verb,
endi f
Il en = | ength(this.blackboard);
if (line > len)

return player:tell ("Sorry, there are only ", len
bl ackboard. ") ;
endi f
this. blackboard = |istdel ete(this.blackboard, 1ine);

if (index = player in this.sitting)
seat = this.details[this.sitting _seats[index]][1];
thi s:stand();

el se

© Anna Cicognani, September 1998, PhD Thesis, Appendices

<l i ne- nunber>");

lines on the

254

seat = 0;
endi f
player:tell (this:erase_bb _nsg());
if (meg = this:oerase_bb _nsg())

t hi s: announce(nsg) ;

endi f
if (seat)
argstr = seat;
this:sit();
endi f
endi f

"Last nmodified Sat Oct 7 14:11:09 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"cl eanb*| ackboard cl eanbb cbb" none none none "rd"
@rog #211: cl eanbl ackboard
"Usage: cl eanb*| ackboard"
"Erase all writing on the bl ackboard."
if ('this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());
el se
this. bl ackboard = {};
if (index = player in this.sitting)
seat = this.details[this.sitting_seats[index]][1];
thi s:stand();
el se
seat = 0;
endi f
pl ayer:tell (this:clean_bb _nsg());
if (meg = this:oclean_bb _nsg())
t hi s: announce(nsg) ;

endi f
if (seat)
argstr = seat;
this:sit();
endi f
endi f

"Last nodified Sun Jul 30 22:50:11 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"restricted_nsg blank_ wite _bb nmsg wite_bb_nsg
owite_bb nsg erase_bb_nsg oerase_bb_nsg cl ean_bb_nsg ocl ean_bb_nsg
hush_nsg hush_i ntruder_nsg sessi on_begi n_nsg sessi on_end_nsg" this none
this "rx"

@rog #211:restricted_nsg

"Expected argunments: NONE'

"Val ues returned: nessage-text [STR";

"Function: returns text stored in the this.(verb) property after
perform ng sonme substitutions.";

nsg = this.(verb);
if (index(verb, "bb"))

© Anna Cicognani, September 1998, PhD Thesis, Appendices 255

dtnane = (i = this:match_detail ("bb")) ? this.details[i][1]
"bl ackboar d";

neg = strsub(nmsg, "%", dtnane, 1);

neg = strsub(nsg, "9%", $string utils:capitalize(dtnane), 1);
endi f
return $string_utils:pronoun_sub(nsg, player, this, this);
"Last modified Sun Jul 30 22:54:02 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"is_authorized" this none this "rx"
@rog #211:is_authori zed

"Expected argunents: <user> [OBJ], <verb> [STR";
"Val ues returned: TRUE || FALSE";

"Function: decide if <user> is allowed to use <verb>.";

v = this:verb_nane(args[2]);

return $permutils:control s(args[1], this) || args[1] in
this.authorized ? 1 | (v in this.restricted_verbs ? 0| 1);

"Last nodified Mon Jul 31 12:02:09 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"may_speak_using" this none this
@rog #211: may_speak_usi ng

"Expected argunents: <user> [OBJ], <verb> [STR";
"Val ues returned: TRUE || FALSE";

rXx

“Function: decide whether <user> may speak in the room using <verb>."
v = this:verb_nane(args[2]);

return ! (this.hush_controllers ? args[1] in this.sitting | 0) &&
($permutils:controls(args[1], this) || args[1l] in this.authorized) |

v in this.allowed_sources;

"Last nodified Thu Jan 18 14:02:31 1996 EST by U f (#238@U_Mai nMXO).";

@erb #211: "announce" this none this "rxd"
@rog #211:announce

"Expected argunents: a line of text [STR";
"Val ues returned: 0 <not hi ng>";

"Function: this is npostly an extension of $room announce() to all ow
source-based filtering with the hel p of may_speak_using() if the room
is in session.";
source = callers() ? callers()[1][2] | "none"
if (this.session && !this:nmay_speak_using(player, source))
index = player in this.sitting;
if (index & this.sitting_seats[index] in this.speaker_seats)
el se
if (player in this:contents())
pl ayer:tell (this:hush_nsg());
el se
pl ayer:tell (this:hush_intruder_msg());
endi f
kill_task(task_id());

© Anna Cicognani, September 1998, PhD Thesis, Appendices 256

endi f

endi f

for pin (setrenmove(this:contents(), player))
p:tell (@rgs);

endf or

"Last nodified Thu Cct 12 14:36:52 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"announce_all" this none this "rxd"
@rog #211: announce_al

"Expected argunents: a line of text [STR";
"Val ues returned: 0 <not hi ng>";

“Function: see announce()";
source = callers() ? callers()[1][2] | "none"
if (this.session & !this:nmay_speak_using(player, source))
index = player in this.sitting;
if (index & this.sitting_seats[index] in this.speaker_seats)
el se
if (player in this:contents())
pl ayer:tell (this:hush_nsg());

el se
pl ayer:tell (this:hush_intruder_msg());
endi f
kill_task(task_id());
endi f
endi f
for pin (this:contents())
p:tell (@rgs);
endf or

"Last nodified Thu Cct 12 11:40:10 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"announce_all _but" this none this "rxd"
@rog #211:announce_al | _but

"Expected argunents: a line of text [STR";

"Val ues returned: 0 <not hi ng>";

“Function: see announce()";
source = callers() ? callers()[1][2] | "none"
if (this.session &% !this:nmay_speak_using(player, source))
index = player in this.sitting;
if (index & this.sitting_seats[index] in this.speaker_seats)
el se
if (player in this:contents())
pl ayer:tell (this:hush_nsg());

el se
pl ayer:tell (this:hush_intruder_msg());
endi f
kill_task(task_id());
endi f
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 257

text = listdelete(args, 1);
contents = this:contents();
for | in (args[1])
contents = setrenove(contents, |);

endf or

for pin (contents)
p:tell (@ext);

endf or

"Last nodified Thu Cct 12 11:40:23 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"announce_lines" this none this "rxd"

@rog #211:announce_l i nes

"Expected argunents: text [LIST] || a line of text [STR";
"Val ues returned: 0 <not hi ng>";

"Function: this is nostly an extension of the Generic |Inproved Room s
announce_lines() to allow source-based filtering with the help of
may_speak_using() if the roomis in session."

source = callers() ? callers()[1][2] | "none"
if (this.session & !this:my_speak_using(player, source))
i ndex = player in this.sitting;
if (index & this.sitting_seats[index] in this.speaker_seats)
el se
if (player in this:contents())
pl ayer:tell (this:hush_nsg());

el se
pl ayer:tell (this:hush_intruder_msg());
endi f
kill_task(task_id());
endi f
el se

nsg = args[1];

if (typeof(nsg) == STR
msg = {nsg};

endi f

contents = setrenove(this:contents(), player);

for line in (nsQ)
for pin (contents)

p:tell (line);

endf or

endf or

endi f

"Last nodified Thu Aug 3 23:14:05 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"speak*up su speak_up speak-up" any any any "rd"

@rog #211: speakup

"Usage: speak*up <text>"

"Speak up in a class that is in session and restricts the usage of
\"say\" and other common verbs of verbal expression.";

pl ayer:tell ("You speak up, \"", argstr, "\"");

© Anna Cicognani, September 1998, PhD Thesis, Appendices 258

nsg = tostr(player. naneg, speaks up, \"", argstr, "\"");
for pin (setrenmove(this:contents(), player))

p:tell (msQ);
endf or

"Last nodified Tue Aug 1 15:55:25 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"say" any any any "rxd"
@rog #211:say
"Usage: say <text>";
"Speak to others in the classroom |f the the classroomis in session
and \"say\" is stifled, you will only be heard by the group sitting at
a table with you.";
if (msg = $permutils:action_restricted(player, "speak"))
return player:tell (nmsg);
endi f
if (this.session & (index = player in this.sitting) & ! ((where =
this.sitting_seats[index]) in this.speaker_seats) &&
't hi s: may_speak_usi ng(pl ayer, verb))
seatn = this.detail s[where][1];
if (length(this:detail_crowd(where)) > 1)

pl ayer:tell ("You say, \"", argstr, "\" to the others at ", seatn,
)

for pin (setrenove(this:detail_contents(where), player))

p:tell (player.name, " says, \"", argstr, "\" to the others at ",

seatn, ".");

endf or

el se
pl ayer:tell ("You say, \"", argstr, "\" to yourself.");

if (contents = setrenove(this:detail _contents(where), player))
for pin (contents)
p:tell (player. naneg,

says, \"", argstr, "\" to ", player.pr
")
endf or
endi f

endi f
el se

pass(@irgs);
endi f
"Last nmodified Mon Cct 9 15:00: 30 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"enote" any any any "rxd"

@rog #211:enote

"Usage: enote <text>";

"Enmote an action to others in the classroom |f the classroomis in
session and general enoting is restricted it will only be seen by the
group sitting at a table with you.";

if (msg = $permutils:action_restricted(player, "speak"))
return player:tell (nmsg);
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 259

if (this.session & (index = player in this.sitting) & !((seat =
this.sitting_seats[index]) in this.speaker_seats) &&
't hi s: may_speak_usi ng(pl ayer, verb))
if (argstr !'="" & argstr[1] == ":")
for pin (this:detail_contents(seat))
p:tell (player.nanme, argstr[2..length(argstr)]);
endf or
el se
for pin (this:detail_contents(seat))
p:tell (player.name, " ", argstr);
endf or
endi f
el se
pass(@rgs);
endi f

"Last nodified Thu Aug 3 23:34:28 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"to “* !*" any any any “"rd"

@rog #211:to

"Usage: to <person> <text>"

" ‘<person> <text>"

I <person> <text>"

"Direct your words to <person>. |f the classroomis in session and the
\"to\" verb is stifled, only people sitting at the table with you will
see your directed speech, that is, if <person> sits at the same table
as you; if that is not the case, the \"to\" results in direct

whi spering that only <person> can hear."

if (verb[1] in {" ", "I"})
if (length(verb) > 1)
nanme = verb[2..length(verb)];

el se
nane = argstr[1..index(argstr, " ") - 1];

endi f

text = argstr;
el se

nane = argstr[1..index(argstr, " ") - 1];

text = argstr[index(argstr, " ") + 1..length(argstr)];
endi f

who = pl ayer: my_mat ch_obj ect (nanme, player.location);
i ndex = player in this.sitting;
if (this.session & !this:my_speak_using(pl ayer, verb))
if (index & !(who in (cont = this:detail _contents(seat =
this.sitting_seats[index]))) && valid(who) || valid(who))

from=index ? tostr(" from", this.detail s[seat][1], ".") | "";

who:tell (pl ayer.nane, " whispers, \"", text, "\"", from;

pl ayer:tell ("You whisper, \"", text, "\" to ", who.nane, ".");
el se

who = valid(who) ? who.nane | nane;

nsg = tostr(player.name, " [to ", who, "]: ", text);

for pin (cont)

p:tell (msQ);

endf or

endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 260

el se

who = valid(who) ? who.nane | nane;
nmsg = tostr(player.nane, " [to ", who, "]: ", text);
t hi s: announce_al | (nsg) ;

endi f

"Last nodified Thu Cct 12 12:43:34 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"verb_nanme*s list_all_verb_names" this none this "rx"
@rog #211:verb_nanes

"Expected argunents: a list of verb-nanes [LIST] || single verb-
string";

"Val ues returned: list of verb-nanes”

“Function: verb_nane*s returns original verb name*s for provided verb-
al i ases"”;

" if respective verbs are defined on the classroom

generic.";

" list_all_verb_nanes returns all verb nanes and aliases for
all";

" provi ded verbs if respective verbs are defined on
t he";

" cl assroom generic."

verbs = typeof(args[1]) == STR ? {args[1]} | args[1];

nanes = {};

if (verb[1] == "v"

for v in (verbs)
nanes = {@anes, (i = verb_info(this.generic, v)) !'= E VERBNF ?
$string utils:words(i[3])[1] | v};
endf or
el se
for v in (verbs)
v = $string_utils:strip_chars(v, "*");
if ((i = verb_info(this.generic, v)) != E_VERBNF)
vnames = $string_utils:words(i[3]);
nanes = {@anes, vnanes};

el se
nanes = {@anes, {Vv}};
endi f
endf or
endi f
return |l ength(names) == 1 ? names[1] | nanes

"Last nodified Thu Aug 3 23:59:24 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"verbs_for" this none this "rxd"

@rog #211:verbs_for

"Expected argunents: <user> [OBJ], optional verb-location [OBJ]";
"Val ues returned: list of verbs [LIST] || <pass>"

"Function: returns verbs that <user> has access to."
who = args ? args[1] | player;
loc = length(args) > 1 ? args[2] | this.generic;

© Anna Cicognani, September 1998, PhD Thesis, Appendices 261

su = $string_utils;
verbs = {};
for v in (verbs(loc))
$comand_util s: suspend_i f _needed(0);
v = su:words(su:strip_chars(v, "*"))[1];
if (verb_args(loc, v) !'={"this", "none", "this"} &&
this:is_authorized(who, v))
verbs = {@erbs, v};
endi f
endf or
verbs = setrenove(verbs, "@ndetail");
if (length(args) > 1)
return { @ass(@rgs), @erbs};
endi f
return verbs;

"Last nodified Thu Cct 12 13:34:35 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"hi dden_verbs" this none this "rxd"
@rog #211: hi dden_ver bs

"Expected argunments: <user> [OBJ]";

"Val ues returned: list of hidden verbs [LIST]";

“"Function: hides verbs that <user> is not allowed to use anyway.";
su = $string_utils;
if (caller == this || $permutils:controls(caller_perns(), this))
hi dden = pass(@rgs);
loc = $code_utils:verb_loc();
hide = $set _utils:diff(this:verbs for(this.owner, |oc),
this:verbs _for(args[1], loc));
for v in (hide)
$comrand_uti | s: suspend_i f _needed(0);
vl oc = $object_utils:match_verb(this, v)[1];
hi dden = setadd(hi dden, {vloc, verb_info(vloc, v)[3],
verb_args(vloc, v)});
endf or
hi dden = setadd(hi dden, {generic = this.generic, verb_info(generic,
"@ndetail")[3], verb_args(generic, "@ndetail")});
hi dden = setadd(hidden, {loc, verb_info(loc, "@ndetail")[3],
verb_args(loc, "@ndetail")});
return hidden;
el se
return E_PERM
endi f

"Last nodified Fri Nov 22 10:54:32 1996 EST by BillC
(#1918@U_Mai nMOO) . " ;

@erb #211:"hel p_nsg" this none this "rxd"

@rog #211: hel p_nsg

"Expected argunments: NONE"

"Val ues returned: hel p- docunentati on [LIST]";

© Anna Cicognani, September 1998, PhD Thesis, Appendices 262

“Function: nmerges verb-docunentation for interesting verbs and spews
out a resulting help text.";

verbs = this:verbs_for(player);
generic = this.generic;
su = $string_utils;
msg = {};
for v in (verbs)
$comand_util s: suspend_i f_needed(0);
if (doc = $code_utils:verb_docunentati on(generic, v))
vnanes = su:words(verb_info(generic, v)[3]);

if (length(vnanes) == 1 && vnanes[1l] == v)
head = su: uppercase(V);
el se
head = tostr(su: uppercase(v), " (", su:english_list(vnanes),
"))
endi f
msg = {@sg, head, @oc, ""};
endi f
endf or
neg = {@sg, tostr("For nmore information, type: @bout ", generic)};

return nsg;
"Last nodified Thu Aug 3 23:59:28 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"detail _contents detail _crowd" this none this "rxd"
@rog #211:detail _contents

"Expected argunents: detail-index [NUM";

"Val ues returned: objects list [LIST]";

“Function: returns contents of a given detail (this includes sitters
and contai ned objects)";
contents = {};

detail = args[1];
if (this.sitting_seats)
for i in[1l..length(this.sitting_seats)]
if (this.sitting _seats[i] == detail)
contents = |istappend(contents, this.sitting[i]);
endi f
endf or
endi f
if (verb[8..12] == "crowd")

return contents;
el sei f (this.containing_details)

for i in[1..length(this.containing_details)]
if (this.containing_details[i] == detail)
contents = |istappend(contents, this.contained[i]);
endi f
endf or
endi f

return contents;
"Last nmodified Fri Aug 4 10:10:27 1995 EDT by U f (#238@U_Mo-
East).";

© Anna Cicognani, September 1998, PhD Thesis, Appendices 263

@erb #211:"count_sitters" this none this "rxd"
@rog #211:count_sitters

"Expected argunents: detail-index [NUM";

"Val ues returned: nunber of sitters [NUM";

"Function: see above.";
if (args[1l] in this.speaker_seats && !this:is_authorized(player
"sit"))

if (!$permutils:control s(player, this) & !(player in
thi s. aut hori zed))

return this.seats[args[1]];

endi f
endi f
return pass(@rgs);
"Last nodified Thu Aug 3 23:59:30 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"title" this none this "rxd"

@rog #211:title

"Expected argunments: NONE"

"Val ues returned: nane+title string [STR";

"Function: displays the \"title_nsg\" after the room nane; when in
session it displays \"session_nsg\" instead.";
if (this.session)

return this.name + this.session _nsg;

el se

bracket = this. brackets;

return this.nane + (this.title_nmsg ? " " + bracket[1l] +
this.title_nsg + bracket[2] | "");
endi f

"Last nodified Thu Aug 3 23:59:31 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"l1 ook_self" this none this "rx"
@rog #211:1o00k_sel f

"Expected argunments: NONE"

"Val ues returned: 0 <not hi ng>";

“Function: appends the \"@pened\" or \"@l osed\" nessage for the door
to the roomdescription if the \"show door\" flag is set.";
pass(@rgs);
if (this.show door)
door = this:match_detail ("door");
if (typeof(door) != ERR
if (this.opened_containers[door] == -1)
return player:tell _lines(this:closed_dnsgs(door));
el sei f (this.opened_containers[door] == 1)
pl ayer:tell _Iines(this:opened_dnmsgs(door));
endi f
endi f
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 264

"Last nodified Tue Apr 30 13:15:40 1996 EDT by U f (#238@U_Mai nMOO).";

@erb #211:"acceptable" this none this "rxd"
@rog #211: acceptabl e

"Expected argunments: <user> [OBJ]";

"Val ues returned: FALSE || <pass>";

"Function: enables classroomspecific security.”
who = args[1];

if (this.door_open || $permutils:controls(who, this) || who in
this.authorized || (this.current_class & who in
this.classes[this.current_class][2]) || $list_utils:assoc(who,
this.invited) || !'is_player(who))

return pass(@rgs);
el se

if (who == this.blessed object & task_id() == this. bl essed_task)
if (msg = this:wal k_repel _nsg())
who:tell (nsQ);
endi f
if (who !'= player && (nmsg = this:pwal k_repel _nsg()))
pl ayer:tell (nsg);
endi f
if (meg = this:owal k_repel _nmsg())
t hi s: announce_al | (nsQ) ;
endi f
endi f
return O;
endi f

"Last nmodified Fri Cct 13 12:36:13 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"open_door close_door" this none this "rxd"
@rog #211: open_door

"Expected argunments: NONE'

"Val ues returned: 0 <not hi ng>";

"Function: sinply toggles the \"door_open\" property.";

if (lcallers() || caller !'=this)
return E_PERM

endi f

if (verb[1l] == "0o")
t hi s. door _open = 1;

el se
t hi s. door _open = 0;

endi f

"Last nmodified Sun Cct 8 13:15:01 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"open close" any any any "rd"
@rog #211: open
"Usage: open/close <detail >";

© Anna Cicognani, September 1998, PhD Thesis, Appendices 265

"Open or close a detail (or attenpt to do so). |If <detail>is the

door, it may only be opened and closed if the use of \"open\" is not

restricted. Qpening or closing the door toggles roomsecurity. |If the

door is closed only students of the currently set up class and

aut hori zed users may enter the classroom?"”;

if (index(argstr, "door") && !this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());

endi f

pass(@rgs);

"Last nodified Thu Aug 3 23:59:33 1995 EDT by U f (#238@U_Mo-

East).";

@erb #211:"find_class" this none this "rx"
@rog #211:find_cl ass
"Expected argunents: class-nanme [STR";

"Val ues returned: class-index [NUM || {} [LIST] || list of class-
i ndeces for anbiguous result [LIST]";

“Function: tries to find a class that matches the argunent. Exact
mat ches are returned i mMmedi ately, failed matches are returned as the

enpty list.";

found = {};
for c in[1l..length(this.classes)]
if (index(this.classes[c][1], argstr) == 1)
if (this.classes[c][1l] == argstr)
return c;
el se
found = {@ound, c};
endi f
endi f
endf or

return (len length(found)) == 1 ? found[1] | found,
"Last nodified Thu Aug 3 23:59:36 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:" @nvi si bl e*-sessi on @how d*oor @unbers @ush-
c*ontrollers" any any any "rxd"

@rog #211: @nvi si bl e-sessi on

"Usage: @nvisible-session on|off [A]";
" @how door on|off [B]";
" @unber s on|off [Q";
@wush-controllers on|off [D";

“I'f enabled, [A] the classroomw Il hide its occupants from @ho
listings during sessions, [B] the @pened or @l osed nessage of the
door is appended to the roomdescription, [C] lines on the bl ackboard
are nunbered, [D] classroom owner and authorized individuals will be
hushed during session like the rest of the class.”

if (callers() & callers()[1][1] !'= this)
return E_PERM

el seif (!this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());

endi f

if (verb[2] =="i")
p = "hi de_when_i n_session";

© Anna Cicognani, September 1998, PhD Thesis, Appendices 266

blah = {"Classes in session are ", " hidden from @ho listings."};
elseif (verb[2] == "s")

p = "show _door";

blah = {"The door is ", " displayed with the room description."};
elseif (verb[2] == "n")

p = "nunbered_bb"

bl ah = {"Lines on the blackboard are ", " nunbered."};
el se

p = "hush_control l ers"

blah = {"Room controllers are ", " hushed during session."};
endi f
if (largstr || 'args)

if (verb[2] == "i" && this.session)

thi s. hide_occupants = this. hide_when_in_session

endi f

pl ayer:tell (blah[1], "currently", tostr(this.(p) ?2 "" | " not"),
bl ah[2]);
elseif (!(choice = argstr in {"off", "on"}))

pl ayer:tell ("Usage: '", verb, " on'" or '", verb, " off'");
el se

this.(p) = choice - 1;

if (verb[2] == "i" && this.session)

thi s. hide_occupants = choice - 1;

endi f

player:tell (blah[1], tostr(this.(p) ? "now' | "no longer"), blah[2]);
endi f

"Last nodified Thu Jan 18 17:57:21 1996 EST by Uf (#238@U_Mai nMXO).";

@erb #211:" @ddspeaker-s*eats @ nspeaker-s*eats @peaker-s*eats" any
any any "rd"

@rog #211: @addspeaker - seat s

"Usage: @ddspeaker-seats <seat (s)>";

! @ nspeaker - seats <seat (s)>";

@peaker - seat s";

"Add or renove <seat(s)> as \"speaker-seats\". Such \"speaker-seats\"
allow individuals to talk freely w thout being stifled whether they are
aut hori zed users or not.";

"@peaker-seats lists the currently designated speaker-seats of the
room",;

if (!'this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());
endi f
if (largstr)
if (verb[2] == "s")
if (!'this.speaker_seats)
return player:tell ("There are currently no speaker-seats in this
room Add seats with \"@ddspeaker-seats <seat(s)>\"");
el se
seats = {};
for seat in (this.speaker_seats)
seats = {@eats, this.details[seat][1]};

endf or
return player:tell ("Speaker-seats for ", $string_ utils:nn(this),
"1 ", $string_utils:english_list(seats), ".");

© Anna Cicognani, September 1998, PhD Thesis, Appendices 267

endi f

el se
pl ayer:tell ("Usage: @ddspeaker-seats <seat(s)>");
pl ayer:tell (" @ nspeaker-seats <seat(s)>");
return player:tell (" @peaker -seats");
endi f
el se
seats = $string utils:words($string_utils:subst(argstr, {{",", "
")
seats = typeof (seats) == STR ? {seats} | seats;
if (verb[2] == "r")
removed = {};
notss = {};
not f ound = {};

for seat in (seats)
if (s =this:mtch_detail (seat))
if (s in this.speaker_seats)
thi s. speaker_seats = setrenove(this. speaker_seats, s);
renoved = setadd(renoved, this.details[s][1]);
el se
notss = setadd(notss, this.details[s][1]);
endi f
el se
not f ound = setadd(notfound, tostr("\"", seat, "\""));
endi f
endf or
i f (notfound)
player:tell ($string_utils:english_list(notfound),

tostr(length(notfound) > 2 ? " don't seemto be details.” | " doesn't
seemto be a detail."));

endi f

if (notss)

player:tell ($string_utils:english_list(notss),
tostr(length(notss) > 2 ? " don't seemto be speaker-seats." |
doesn't seemto be a speaker-seat."));

endi f
if (renmoved)
pl ayer:tell ("You remove ", $string utils:english_list(renoved),
as speaker-seats.");

endi f
el se
added = {};
added_al ready = {};
not found = {};
for seat in (seats)
if (s =this:mtch_detail (seat))
if (!'(s in this.speaker_seats))
this. speaker_seats = setadd(this.speaker_seats, s);
added = setadd(added, this.details[s][1]);
el se
added_al ready = setadd(added_al ready, tostr("\"",
this.details[s][1], "\""));
endi f
el se
not f ound = setadd(notfound, tostr("\"", seat, "\""));

© Anna Cicognani, September 1998, PhD Thesis, Appendices 268

endi f
endf or
i f (notfound)
player:tell ($string_utils:english_list(notfound),

tostr(length(notfound) > 2 ? " don't seemto be details.” | " doesn't
seemto be a detail."));
endi f

i f (added_al r eady)

player:tell ($string_utils:english_|ist(added_already),
tostr(length(added_already) > 2 ? " are already designated speaker-

seats.” | " is alread a designated speaker-seat."), " Type @peaker-
seats to get a list of designated speaker-seats.");

endi f

i f (added)

player:tell ("You add ", $string utils:english_list(added), to
the Iist of speaker-seats.");
endi f
endi f
endi f

"Last nodified Thu Cct 12 12:52:46 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"@estrict*ions @nrestrict" any any any "rd"
@rog #211: @estrictions

"Usage: @estrict <verb(s)>";

" @nrestrict <verb(s)>";

@estrictions";

"Restrict or unrestrict the usage of the specified <verb(s)> to
aut hori zed users of the classroom";

"I'f \"sit\" is restricted, only authorized users may sit at speaker-
seats, such as the \"teacher's desk\".";

“I'f \"open\" is restricted, only authorized users may open and cl ose
the door to the classroom and hence mani pul ate the cl assroom
security.";
"@estrictions will display the list of currently restricted verbs.";
if (!'this:is_authorized(player, verb))

return player:tell(this:restricted_nsg());

endi f
if (largstr)
if (verb = "@estrictions")
verbs = this:list_all_verb_names(this.restricted_verbs);
nanes = {};
for v in (verbs)
nanes = {@anes, (len = length(v)) > 1 ? tostr(v[1], " (aka "
$string_utils:english_ list(v[2..len]), ")") | v[1]};
endf or
pl ayer:tell ("The followi ng verbs are restricted to authorized
users: ", $string_ utils:english_list(nanes, "none"), ".");
el se
pl ayer:tell ("Usage: @estrict <verb(s)>");
pl ayer:tell (" @nrestrict <verb(s)>");
return player:tell (" @estrictions");
endi f
el se

© Anna Cicognani, September 1998, PhD Thesis, Appendices 269

actions = $string_utils:words($string utils:subst(argstr, {{",",
")
actions = this:verb_nanes(actions);
actions = typeof (actions) == STR ? {actions} | actions;
if (verb[2] == "u"
renoved = {};
not found = {};
for action in (actions)
if (action in this.restricted_verbs)
this.restricted_verbs = setrenove(this.restricted_verbs,
action);
renoved = setadd(renoved, action);
el se
not found = setadd(notfound, tostr("\"", action, "\""));
endi f
endf or
i f (notfound)
player:tell ($string_utils:english_list(notfound),
tostr(length(notfound) > 2 ? " are not currently restricted verbs." | "
is not a currently restricted verb."), " Type @estrictions to get a
list of currently restricted verbs.");

endi f
if (renmoved)
pl ayer:tell ("You renove the restrictions for ",

$string_utils:english_list(renmoved), ".");
endi f
el se
added = {};

added_al ready = {};
for action in (actions)
if (!(action in this.restricted_verbs))
this.restricted_verbs = setadd(this.restricted_verbs, action);
added = setadd(added, action);
el se
added_al ready = setadd(added_al ready, tostr("\"", action

"))
endi f
endf or
i f (added_al r eady)
player:tell ($string_utils:english_|ist(added_already),
tostr(length(added_already) > 2 ? " are already restricted verbs."
is alread a restricted verb."), " Type @estrictions to get a list of
currently restricted verbs.");
endi f
i f (added)
player:tell ("You restrict ", $string_utils:english_list(added),

)
endi f
endi f
endi f

"Last nodified Thu Cct 12 12:51:04 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"@tifle @nstifle*d" any any any "rd"

© Anna Cicognani, September 1998, PhD Thesis, Appendices 270

@rog #211: @&tifle

"Usage: @tifle <verb(s)>"

" @nstifle <verb(s)>"
" @nstifled";

"Stifle or unstifle the output of <verb(s)> for a classroomin
session.";

"Unstifling the output of verbs such as \"@o\" or \"hone\" is
recommended, if you want to avoid silent teleportation into and out of
the classroom"”;

"@nstifled will display the currently unstifled verbs for the
cl assroom";

if (!'this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());
endi f
if (largstr)
if (verb = "@nstifled")
verbs = this:list_all_verb_nanes(this.all owed_sources);

nanes = {};
for v in (verbs)
nanes = {@anes, (len =length(v)) > 1 ? tostr(v[1], " (aka ",

$string utils:english_ list(v[2..len]), ")") | v[1]};

endf or

player:tell ($string_utils:nn(this), " allows output fromthe
following verbs while in session: ", $string_utils:english_list(nanes,
“none"), ".");

pl ayer:tell ("Please consult “hel p noderation' for nore information
on output stifling.");

el se
pl ayer:tell ("Usage: @tifle <verb(s)>");
pl ayer:tell (" @nstifle <verb(s)>");
pl ayer:tell (" @instifled");
endi f
el se

sources = $string_utils:words($string utils:subst(argstr, {{",",

"))

sources = this:verb_nanes(sources);
sources = typeof (sources) == STR ? {sources} | sources;
if (verb[2] == "s")
renoved = {};
not found = {};
for source in (sources)
if (match = $list_utils:assoc_prefix(source,
thi s. dat a. verb_groups))
for v in (match[2])
if (v in this.allowed_sources)
this.all owed_sources = setrenove(this.allowed_sources, Vv);
renoved = setadd(renoved, v);
el se
not found = setadd(not found, v);
endi f
endf or
el seif (source in this.allowed_sources)
this.all owed_sources = setrenove(this.allowed_sources, source);
renoved = setadd(renoved, source);
el se

© Anna Cicognani, September 1998, PhD Thesis, Appendices 271

not found = set add(not found, source);
endi f
endf or
i f (notfound)
player:tell ($string_ utils:english_list(notfound),
tostr(length(notfound) > 2 ? " aren't unstifled verbs." | " isn't a
unstifled verb."), " Type @nstifled to get a list of currently
unstifled verbs.");

endi f
if (renmoved)
pl ayer:tell ("You stifle the output of ",

$string_utils:english_list(renmoved), ".");
endi f
el se
added = {};

added_al ready = {};
for source in (sources)
if (match = $list_utils:assoc_prefix(source,
thi s. dat a. verb_groups))
for v in (match[2])
if (!(vin this.allowed_sources))
this.all owed_sources = setadd(this.allowed_sources, v);
added = setadd(added, v);
el se
added_al ready = setadd(added_al ready, v);
endi f
endf or
el seif (!(source in this.allowed_sources))
this.all owed_sources = setadd(this.allowed_sources, source);
added = setadd(added, source);
el se
added_al ready = setadd(added_al ready, source);
endi f
endf or
i f (added_al r eady)

player:tell ($string_utils:english_|ist(added_already),
tostr(length(added_already) > 2 ? " are already unstifled verbs." | "

is alread an unstifled source."), " Type @nstifled to get a list of
currently unstifled verbs.");

endi f

i f (added)

pl ayer:tell ("You unstifle the output of "

$string utils:english_list(added), ".");

endi f

endi f

endi f

"Last nmodified Fri COct 13 16:23:50 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:" @ut h*ori zed @naut h*ori ze" any any any "rd"
@rog #211: @ut hori zed

"Usage: (@uthorize <user(s)>";

" @mnaut hori ze <user(s)>"

" @ut hori zed";

© Anna Cicognani, September 1998, PhD Thesis, Appendices

272

"Aut hori ze or unauthorize <user(s)> for the classroom";
“Aut hori zed users may use all the administrative verbs."
"@ut hori zed displays the list of currently authorized users.";
if (!'this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());

endi f
if (largstr)
if (verb == "@uthorized")
group = this.authorized;
player:tell ("Authorized users of ", $string_utils:nn(this), ": ",
tostr(group ? $string_utils:nanmes_of (group, ", ") | "nobody"), ".");
el se
pl ayer:tell ("Usage: @uthorize <user(s)>");
pl ayer:tell (" @naut hori ze <user(s)>");
return player:tell (" @ut hori zed");
endi f
el se

group = $string_utils:words($string utils:subst(argstr, {{",", "
"D

not found = {};
rest = {};
if (verb[2] == "u")
renoved = {};
for user in (group)
if (valid(person = player:ny_match_object(user)) || valid(person
= $pl ayer _db: find(user)))
if (person in this.authorized)
this.authorized = setrenove(this.authorized, person);
renoved = setadd(renoved, person);
el se
rest = setadd(rest, person);
endi f
el se
not f ound = setadd(notfound, tostr("\"", user, "\""));
endi f
endf or
i f (notfound)
player:tell ($string_utils:english_list(notfound),

tostr(length(notfound) > 1 ? " are not the names of any users.” | " is
not the nanme of any user."));
endi f
if (rest)
pl ayer:tell ($string_utils:nanes_of (rest, ", "),
tostr(length(rest) > 2 ? " are not currently authorized users.” | " is
not a currently authorized user."), " Type @uthorized to get a |ist
of currently authorized users.");
endi f
if (renmoved)
player:tell ("You remove ", $string_utils:nanes_of (renoved, ", "),
" fromthe list of authorized users.");
endi f
el se
added = {};

for user in (group)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 273

if (valid(person =
= $pl ayer _db: find(user)))

pl ayer: my_mat ch_obj ect (user)) ||

val i d(person

if (!(person in this.authorized))

this.authorized =

tostr("\"",

setadd(this. authorized, person);

user,

)

added = setadd(added, person);
el se
rest = setadd(rest, person);
endi f
el se
not f ound = set add(not f ound,
endi f
endf or

i f (notfound)

player:tell ($string_utils:english_list(notfound),

tostr(length(notfound) > 1 ? " are not the names of any users.” | " is
not the nane of any user."));

endi f

if (rest)

pl ayer:tell ($string_utils:nanes_of (rest, ", "),

tostr(length(rest) > 2 ? " are already authorized users.” | " is
al ready an authorized user."), " Type @uthorized to get a list of
currently authorized users.");

endi f

i f (added)

player:tell ("You add ", $string_utils:nanes_of (added, ", "), " to

the Iist of authorized users.");

endi f

endi f

endi f
"Last nodified Thu Aug 3 23:59:59 1995 EDT by U f (#238@U_Mo-
East).";
@erb #211:" @ession" any any any "rd"
@rog #211: @Gession
"Usage: @ession begin|end";
" @ession";
"Begin or end a class-session. Only unstifled verbs' output is seen

fromstudents (\"enote\" and \"say\"
sit at); authorized users' output is
"This may also toggle the visibility
listings,

if the roomis set up to hide its occupants in sessions.

are restricted to tables students
not stifled.";

of people in the roomin @ho
The

roomtitle changes to display the @essi on nmessage behind the room

nane. ";

"@ession all by itself displays the

current status of the classroom"”;

msg()) .

if ('this:is_authorized(player, verb))
return player:tell(this:restricted_

endi f

if (largstr)

return player:tell ($string_utils:nn(this),

is currently ",

this.session ? "in" | "not in", " session.");
endi f
if (dobj == this && prepstr == "is")
return $l ast _huh: (verb) (@rgs);
el seif (argstr in {"on", "start", "begin", "1"})

if (this.session)

© Anna Cicognani, September 1998, PhD Thesis, Appendices

274

player:tell(this:title(),
el se
this.session = 1;
t hi s. hide_occupants = this. hide_when_in_session ? 1
t hi s. hi de_occupants;
t hi s: announce_al | (t hi s: sessi on_begi n_nsg());
endi f
el seif (argstr in {"off", "stop", "end", "0"})
if (!this.session)
player:tell (this:title(),
el se
this.session = 0;
t hi s. hide_occupants = this. hide_when_in_session ? 0
t hi s. hi de_occupants;
t hi s: announce_al | (thi s: session_end_nsg());
endi f
el se
pl ayer:tell ("Usage: ", verb
endi f

"Last nmodified Fri Aug 4 00:00:01 1995 EDT by U f (#238@U_Mo-
East).";

is already in session.");

is not in session currently.");

begi n| end");

@erb #211:" @kcl ass" any any any "rd"
@rog #211: @rkcl ass
"Usage: @kcl ass <cl ass-nanme>";
" @rkcl ass <VSPO- gr oup- nunber >";
"Set up a new class for the classroom?"”;
if ('this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());
endi f
if (largstr)
return player:tell("Usage: ", verb
nunber >");
endi f
class = this:find_class(argstr);
if (typeof(class) == NUM
if ((name = this.classes[class][1l]) == argstr)
return player:tell ("Sorry, there is already a class by that
name. ") ;
el seif (!'$command_utils:yes_or_no(tostr("There's already a class with

<cl ass- nane>| <VSPC gr oup-

a simlar name - \"", nanme, "\". Do you want to add a new class called
\"", argstr, "\" anyway?")))
return player:tell ("Aborted.");
endi f

el sei f (class)
mat ches = {};

for i in (class)
mat ches = {@mtches, this.classes[i][1]};
endf or
if (!$command_utils:yes_or_no(tostr("There are already classes with
simlar nanes: ", $string utils:english_|ist(mtches), " Do you want
to add a new class called \"", argstr, "\" anyway?")))
return player:tell ("Aborted.");
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 275

el se
if ($string_utils:is_nunmeric(argstr) &&

$comrand_util s:yes_or_no("Wuld you like to set up a class for a VSPO

group?”))
if ((group = $vspo_regi stry: get_group(gnum = tonun(dobjstr)))
E_| NVARG
return player:tell ("There isn't a VSPO group nunbered \"",

argstr, "\".");

endi f
el se

group = {};
endi f
i f (group)

this.classes = setadd(this.classes, {@roup[2..3], {tine(),
me()}, player});

this.current_class = this:find_class(group[2]);

t

el se
this.classes = setadd(this.classes, {argstr, {}, {tinme(), tinme()},
player});
this.current_class = this:find_class(argstr);
endi f
newcl ass = group ? group[2] | argstr;
pl ayer:tell ("You set up a newclass called ", newlass, ".");
thi s: announce(pl ayer. nane, " sets up a new class called ", newcl ass,
")
endi f

"Last nmodified Fri Aug 4 00:00:03 1995 EDT by Uf (#238@U_Mo-
East).";

@erb #211:" @ntl ass" any any any "rd"
@rog #211: @ncl ass
"Usage: @ntlass <cl ass-nanme>";
"Renove a registered class fromthe classroom";
if ('this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());

endi f
if (largstr)
return player:tell ("Usage: ", verb, " <class-nanme>");
endi f
class = this:find_class(argstr);
if (!class)

pl ayer:tell ("Sorry, there does not appear to be a class by that
nane. ") ;

el sei f (typeof (class) == NUM

this.classes = |listdel ete(this.classes, class);
this.current_class = this.classes ? 1| O;
pl ayer:tell ("You renove a class called ", argstr, ".");
thi s: announce(pl ayer. nane, " renpoves a class called ", argstr,
el se
mat ches = {};
for i in (class)
mat ches = {@mtches, this.classes[i][1]};
endf or

pl ayer:tell ("Please be nore specific.");

© Anna Cicognani, September 1998, PhD Thesis, Appendices

276

player:tell ("\"", argstr, "\" could refer to
$string_utils:english_list(mtches, "none", " or "), ".");
endi f
"Last nmodified Fri Aug 4 00:00:10 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:" @l ass*es @etup-c*l ass @etupc*l ass" any any any "rd"
@rog #211: @l asses

"Usage: @l ass <cl ass-nane>"

" @l ass";

" @l asses";

"Set up a classroomfor <class-nane> |If the classroomis in session

only students of <class-name> will be allowed to enter the classroom
aut hori zed users may al ways enter, regardless."

"@lass all by itself displays the class the classroomis currently set
up for. @l asses displays a list of registered classes conplete with
t he nunber of students associated with each of them™";

if (!'this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());
endi f
if (largstr)
if (!this.classes)
return player:tell ("Sorry, there haven't been any cl asses set up
yet.");
el seif (verb == "@l ass")
if (this.current_class)
return player:tell($string_utils:nn(this),
for ", this.classes[this.current_class][1], ".");
el se
return player:tell ($string_utils:nn(this),
any class, currently.");
endi f
el se
cl asses = {};
for class in (this.classes)

is currently set up

is not set up for

cl asses = { @l asses, tostr(class[1], " [", tostr(length(class[2])

? length(class[2]) | "no"), " students]")};

endf or

return player:tell ("Registered classes for ",
$string_utils:nn(this), ": ", $string_utils:english_list(classes),
")

endi f

endi f

class = this:find_class(argstr);
if (typeof(class) == NUM
this.current_class = class;

pl ayer:tell ("You set ", this:title(), " up for ",
this.classes[class][1], ".");

thi s: announce(pl ayer. nane, " sets ", this:title(), " up for ",
this.classes[class][1], ".");

el seif (!class)

pl ayer:tell ("Sorry, there does not appear to be any class by that
name.");
el se

mat ches = {};

© Anna Cicognani, September 1998, PhD Thesis, Appendices 277

for i in (class)
mat ches = {@mtches, this.classes[i][1]};

endf or

pl ayer:tell ("Please be nore specific.");

pl ayer:tell ("\"", argstr, "\" could refer to ",
$string_utils:english_list(mtches, "none", " or "), ".");
endi f

"Last nodified Sun Jan 21 23:54:38 1996 EST by Uf (#238@U_Mai nMXO).";

@erb #211:"reg*ister unreg*ister" any none none "rd"

@rog #211:register

"Usage: register <user(s)>"

" unregi ster <user(s)>";

"Add or renove <user(s)> fromthe roster of the currently set up
class.”;

if ('this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());
endi f
if (largstr)
return player:tell("Usage: ", verb, " <student(s)>");
el se
group = $string utils:words($string_utils:subst(argstr, {{",", "
")

not found = {};
rest = {};
class = this.current_cl ass;
if (class && this.classes[class])
if (verb[1] == "u")
renoved = {};
for user in (group)
if (valid(person = $string_utils:mtch(user,
this.classes[class][2], "nane", this.classes[class][2], "aliases")) ||
val i d(person = player: ny_mat ch_obj ect(user)) || valid(person =
$pl ayer _db: find(user)))
if (person in this.classes[class][2])
this.classes[class][2] = setrenove(this.classes[class][2],

person);
renoved = setadd(renoved, person);
el se
rest = setadd(rest, person);
endi f
el se
not found = setadd(notfound, tostr("\"", user, "\""));
endi f
endf or

i f (notfound)

player:tell ($string_utils:english_list(notfound),
tostr(length(notfound) > 1 ? " are not the names of any users.” | " is
not the nane of any user."));

endi f
if (rest)
player:tell ($string utils:names_of (rest, ", "),
tostr(length(rest) > 2 ? " are not registered to " | " is not
registered to "), this.classes[class][1], ".");

© Anna Cicognani, September 1998, PhD Thesis, Appendices 278

endi f
if (renpved)
this.classes[class][3][2] =tinme();

pl ayer:tell ("You remove ", $string_utils:names_of (renmoved, ",
")y, " from", this.classes[class][1], ".");
endi f
el se
added = {};

for user in (group)
if (valid(person = player:ny_match_object(user)) ||
val i d(person = $pl ayer_db: find(user)))
if (!(person in this.classes[class][2]))
this.classes[class][2] = setadd(this.classes[class][2],

person);
added = set add(added, person);
el se
rest = setadd(rest, person);
endi f
el se
not found = setadd(notfound, tostr("\"", user, "\""));
endi f
endf or

i f (notfound)
player:tell ($string_utils:english_list(notfound),

tostr(length(notfound) > 1 ? " are not the names of any users.” | " is
not the nane of any user."));
endi f
if (rest)
player:tell ($string_utils:names_of (rest, ", "),
tostr(length(rest) > 2 ? " are already registered for " | " is already
registered for "), this.classes[class][1], ".");
endi f
i f (added)
this.classes[class][3][2] =tinme();
pl ayer:tell ("You add ", $string_ utils:nanmes_of (added, ", "), "
to ", this.classes[class][1], ".");
endi f
endi f
el se

if (this.classes)
pl ayer:tell ("Please set up a class with @l ass <cl assnane>
first.");
el se
pl ayer:tell ("Please set up a class with @rkcl ass <cl assnanme>
first.");
endi f
endi f
endi f
"Last nodified Sat Feb 3 12:19:58 1996 EST by U f (#238@U_Mai nMXO).";

@erb #211:" @tat*us" any any any "rd"
@rog #211: @t atus
"Usage: @tatus [l ong|verbose]”;

© Anna Cicognani, September 1998, PhD Thesis, Appendices 279

"Display the classrooms setup. |If \"long\" is given as an argunent
you get the extended version.";

if ('this:is_authorized(player, verb))
return player:tell(this:restricted_nsg());

endi f

su = $string_utils;

long = index(argstr, "long") || index(argstr, "verbose") ? 1| O;

pl ayer:tell ("Status for ", su:nn(this), ":");

pl ayer:tell();

pl ayer:tell ("The roomis ", tostr(this.session ? "" | "not "), "in
session and the door is presently ", tostr(this.door_open ? "open."
“closed."));

pl ayer:tell();

if (long)

this:("@nvisible")();
pl ayer:tell();
this: ("@howd") ()
pl ayer:tell();
this: ("@unbers")();
pl ayer:tell();
this: ("@ush-c")();
pl ayer:tell();
endi f
if (len = length(this.allowed_sources))
if (!'long)
pl ayer:tell (Ien, verbs may send text to the roomin session.");
player:tell (" To see a list of them type: @nstifled");

el se
verbs = this:list_all_verb_nanmes(this.allowed_sources);
nanes = {};
for v in (verbs)
nanes = {@anes, (len = length(v)) > 1 ? tostr(v[1], " (aka "
suzenglish_list(v[2..len]), ")") | v[1]};
endf or
player:tell ("It allows output fromthe followi ng verbs while in
session: ", su:english_list(names, "none"), ".");
endi f
el se

player:tell ("No verbs may send text to the roomin session.");
endi f
pl ayer:tell();
if (len = length(this.restricted_verbs))

if (!'long)
player:tell ("The use of ", len, " verbs is currently restricted.");
player:tell (" To see a list of them type: @estrictions");
el se
verbs = this:list_all_verb_names(this.restricted_verbs);
nanes = {};
for v in (verbs)
nanes = {@anes, (len = length(v)) > 1 ? tostr(v[1], " (aka "
suenglish_list(v[2..len]), ")") | v[1]};
endf or
pl ayer:tell ("The followi ng verbs are restricted to authorized
users: ", su:english_list(names, "none"), ".");
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 280

el se
pl ayer:tell ("None of the roomis verbs are restricted.");
endi f
pl ayer:tell();
if (this.current_cl ass)
player:tell ("It can be setup for any of the follow ng classes:");
pl ayer:tell();
for cin [1l..length(this.classes)]

pl ayer:tell (" ", su:left(this.classes[c][1], 25),
I ength(this.classes[c][2]), " registered");
endf or

pl ayer:tell();
player:tell ("It is currently setup for ",
this.classes[this.current_class][1], ".");

pl ayer:tell();
if (bunch = this.classes[this.current_class][2])
namel ess = 0;
for student in (bunch)
i f (!student. name)
bunch = setrenmove(bunch, student);
nanel ess = nanel ess + 1;

endi f
endf or
player:tell ("C ass roster includes: ", su:title_list(bunch),
tostr(nanmeless ? tostr(" [+", naneless, " uninitialized VSPGs]")
"))
el se
player:tell ("Roster is enpty.");
endi f

el seif (!this.classes)
pl ayer:tell ("No cl asses have been set up here yet.");

el se

pl ayer:tell ("The classroomis not set up for any of the ",
I ength(this.classes), " classes registered.");
endi f

pl ayer:tell();
if (this.authorized)

pl ayer:tell ("Authorized users: ", su:title_list(this.authorized));
el se

pl ayer:tell ("The list of authorized users is enpty.");
endi f

pl ayer:tell();
"Last nodified Mon Jan 22 00:13: 00 1996 EST by U f (#238@U_Mai nMXO) . ";

@erb #211:"trusted" this none this "rx"

@rog #211:trusted

cv =callers()[1][2];

return $permutils:control s(args[1], this) || args[1l] in this.residents
|| this:is_authorized(args[1], cv);

"Last nmodified Fri Qct 27 13:18:21 1995 EDT by U f (#238@U_Mo-
East).";

@erb #211:"init_for_core" this none this "rx"

© Anna Cicognani, September 1998, PhD Thesis, Appendices 281

@rog #211:init_for_core

"Copi ed from The System Cbject (#0):init_for_core by Adm nistrator (#2)

Mon Dec 1 16:26:51 1997 EST";
if (caller_perns().w zard)

pass();

if ("server_started" in verbs(this))
code = {"callers() || ($last_restart_tine =time());"};
set _verb_code(this, "server_started", code);

endi f

if ("name_l ookup_failed" in verbs(this))
del ete_verb(this, "name_l ookup_failed");
endi f
if ("uptinme_since" in verbs(this))
del ete_verb(this, "uptinme_since");
endi f
if ("do_command"” in verbs(this))
del ete_verb(this, "do_comand");
endi f
$shut down_nessage = "";
$shut down_tine = 0;
$dunp_i nterval = 3600;
$gripe_recipients = {player};

$class_registry = {{"generics", "CGeneric objects intended for use as

the parents of new objects", {$room S$exit, $thing, $note, $letter
$cont ai ner, $root _class, $player, $prog, $wiz, $generic_editor

$mai |l _recipient, $mail _agent}}, {"utilities", "Qbjects holding usefu

gener al - pur pose verbs", {$string utils, $gender utils, $trig utils,
$time_utils, $match_utils, $object_utils, $lock_ utils, $list_utils,
$command_utils, $code_utils, $permutils, $building_utils}}};

set _verb_code(this, "user_connected", verb_code(this,
"user _connected(core)"));

del ete_verb(this, "user_connected(core)");
endi f

@erb #211:"@ndetail" any any any "rd"

@rog #211: @ ndet ai |

pass(@rgs);

"Last nodified Thu Mar 26 09: 13: 44 1998 EST by Creeper
(#101@irtual _Canpus).";

----- End of @rchive #211

$storage

@rchive #185 with verbs and properties
----- Begi nni ng of @rchive #185

@reate #3 naned Storage Area Prototype, storage
; #185. ("entrances") = {#1054}

; #185. (" bl essed_object") = #-1

; #185. (" bl essed_task") = 1744126431

; #185. ("exi ts") = {#790}

; #185. ("invited") = {}

© Anna Cicognani, September 1998, PhD Thesis, Appendices

282

; #185. ("key") = 0

; #185. ("al i ases") = {"Storage Area Prototype", "storage"}

; #185. ("description") = {"This area, a storage area, allows you to
regi ster objects according to certain categories, and have them

di spl ayed when needed.", "To see the displays avail able type:

di splays", "If you need additional help type: hel p here"}

; #185. (" obj ect _si ze") = {30982, 896601616}

; #185. ("web_cal I s") = 155

; #185. ("l ast _nodi fi ed") = 880691499

; #185. ("creation_date") = 0

@rop #185."open" 0 "rc"

@rop #185."di spl ays" {{}} "r"

@rop #185."not _add_nsg" "You can't seemto add that here
@rop #185."not _control _nsg" "You are not allowed to do that.'
@rop #185."single" 0 "rc"

@rop #185."nanes" {} "r"

@rop #185."hel p_single_nsg" {"This is a display roomin which you can
obtain informati on about various objects that are put up on display by
their respective creators.”, "", "To see what objects are registered
here, type 'displays'.", "To have a closer | ook at one of the objects
type 'show <obj ect>'" where <object> is either its nunber in the display
list, or sone part of its nanme."} "rc"

@rop #185."hel p_multi_nsg" {"This is a display roomthat holds lists
of different objects. The objects are separated into different
categories. To see a list of categories, type: 'displays'. To see a
list of objects on a particular category, type 'display <category>',
where <category> is either the nunber of that category in the list, or
a di stinguishable part of its name. To see a listing of al

categories, type '"display all'.", "", "To see nore informati on on a
particul ar object, type: 'show <object>', where <object> is either that
object's nunber or part of its nanme."} "rc"

@rop #185."hel p_control _nmsg" {"", "The display roomhas a toggle
bet ween having only one list of objects, or allowing nore lists. This
toggle is controlled by the property .single. Set the .single property

"pe"

rc

to O if you would like nore lists of objects in the displays.”, "", "If
you choose to do that, additional conmands that control categories
becone available;", "", "' @dd-cat*egory <category nanme>", "

adds <category nane> as the nane of a new category.", @ m cat *egory

<cat egory name>'", " renoves the category by the name <category

name>. ", @ enane- cat *egory <category name> to <new nane>'",

changes the nane of that category.", "", "And a very powerful verb for
easy resetting of the displays, '@lear'.This will clear off al
displays. It will ask for confirmation, but be careful.", "", "To
deci de whi ch players and objects that can be added to the displays,
there are two verbs that controls this. :check_player, will return a

true value if the person doing a registration is allowed to add the
object *e is trying to add. And :check_object will return 1 if the

obj ect can be added. As for now, there is only one way to protect
registration wthout progranm ng one of the controls verb. Set the
.open property to 0, and only soneone who controls the room can

regi ster objects. The person trying to register an object will then
see the .register_nmsg.", "", "If other tests on objects or persons are
wanted, like only fertile objects, talk to Creeper, to nmake a
restricted kid of this generic with the wanted tests. O you can
programthe :check_* verbs yourself."} "rc"

@rop #185."register_nsg" {"", "To register an object here, talk to the
owner of this place."} "rc

© Anna Cicognani, September 1998, PhD Thesis, Appendices 283

@rop #185."hel p_register_nsg" {"", "To regi ster an object here, type
' @egi ster <object>, where <object> is the", "object nunber, or nane,
of the object you would like to register.", "", "To renove an obj ect
you have registered, type ' @enove <object>', where <object>", "is
either its nunber in the display list, or a prefix of its nane."} "rc
@rop #185."register_multi_hel p_nsg" {"", "To regi ster an object here,
type 'register <object> for <category>', where ", "<object> is the

obj ect you would like to add, and <category> is the category to", "put
it in. You'll see the |list of categories by typing 'displays'.", "",
"To renove an obj ect you have added, type 'renove <object> from
<category>',", "where <object> and <category> are as in register."}
"pen

@rop #185. "hel p_check_nsg" {"", "For an object to be added to this
display room it has to be of a special kind. The object has to be
readabl e, has to have at |east one verb defined on it, has to have help
docunentation, be a child of here.generic_parent, and either be a
feature object or fertile."} "rc"

@rop #185."public_library" 0 "rc"
@rop #185."current_category" {} "r"
@rop #185."generic_parent" #1 "rc"
@rop #185."hel p_required" 1 "rc"

@erb #185:"check_object” this none this "rxd"
@r og #185: check_obj ect
"Adds extra tests to the perm sions check froma | evel down";

"Cbj ects have to be readable, fertile or feature object, have to have
hel p (depends on . hel p_required), have to have at |east one verb
defined, and be a child of .generic_parent.";

“this.generic_parent can either be an object nunber (the required
parent) or a list of object nunbers (all acceptable parents).";
object = args[2];
if (typeof(this.generic_parent) != LIST & ! $object utils:isa(object,
thi s.generic_parent))

player:tell ("Cbjects that are to be added here have to be descendents

of ", $string utils:nn(this.generic_parent), ".");
return O;

el seif ($object utils:isa(object, $feature))
if (!(object.feature_ok & object.r))

pl ayer:tell ("Features have to have their .feature_ok property set
and have to be readable.");
return O;
endi f
elseif (!(object.f && object.r))
pl ayer:tell ("Cbjects have to be fertile and readable.");
return O;
endi f
if (length(verbs(object)) < 1)
pl ayer:tell ("Cbjects have to have at |east one verb added.");
return O;
elseif (this.help_required &
typeof ($code_utils:verb_or_property(object, "hel p_nsg")) == ERR
if (!(player.w zard & $command_utils:yes_or_no("The object seens to
| ack hel p docunentation. Add it anyway?")))
pl ayer:tell ("Cbjects have to contain sufficient help
docunentation.");

return O;
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 284

endi f
if (this.generic_parent && typeof(this.generic_parent) == LIST)
for parent in (this.generic_parent)
if ($object_utils:isa(object, parent))
return 1;
endi f
endf or
pl ayer:tell (" Cbject nust be decended from one of one of these

objects: ", $string_utils:nn_list(this.generic_parent, "<error>"
"))

return O;
endi f
return 1;
"Last nodified Tue May 20 13: 14: 03 1997 EDT by EricM
(#5058@U_Mai NMOO) . *;

or

@erb #185:"check_player"” this none this "rxd"
@r og #185: check_pl ayer

if ((c =callers()) & c[1][2] == "hel p_nsg")
return 1;
el se
return this.open || $permutils:controls(args[1], this) |

(length(args) > 1 ? $permutils:controls(args[1], args[2]) | 0);
endi f

"Last nmodified Fri Nov 3 10:34:32 1995 EST by U f (#238@U_Mo-
East).";

@erb #185:"di spl ay*s" any any any "rd"
@r og #185: di spl ays
"Usage: displays [<category name>]";
"Gves a listing of the displays in this room <category name> is used
when the room has nore than one category."”;
if ('this.single)
if (largstr)

"Wants a list of the displays.";

out = {};

for i in[1l..1en = length(this.nanes)]

out = {@ut, tostr(" ", i, ")",

$string_utils:space(length(tostr(len)) + 2 - (length(tostr(i)) + 1), "
"), this.names[i])};

endf or

pl ayer:tell ("The foll owing categories are available:");

pl ayer:tell();

player:tell _lines($string_utils:columize(out, 2,
pl ayer:linelen()));

pl ayer:tell();

pl ayer:tell ("To see the displays on one of them type 'display
<cat egory>'");

return;

el seif (argstr == "all")
"Wants a run-down of all displays.";
for i in [1l..length(this.nanes)]

cur = this:get_category();

© Anna Cicognani, September 1998, PhD Thesis, Appendices 285

player:tell _lines({tostr(tostr(i == cur 2 "*" | ""), i, ")

Di splays on ", this.nanes[i], ":"), "",

@ hi s: preper_show(this.displays[i], 0),

$string utils:space(player:linelen(), "-"), ""});
endf or

return player:tell ("Done showing all available categories; \"*\"
mar ks the category you are currently view ng. Type 'display
<category>' to view categories individually.");

elseif (!(ind =this:find_cat(argstr)))

what = $string_utils:is_nuneric(argstr) ?
$string_utils:english_ordinal (argstr) | tostr("\"", argstr, "\"");

pl ayer:tell ("There is no ", what, " category to display.");

pl ayer:tell ("Type 'displays' for a listing of avail able
categories.");

if ("on" in args)

pl ayer:tell ("Maybe you nean to 'show ", argstr, "'?");
endi f
return;
el se
player:tell lines({tostr("Di splays on ", this.nanmes[ind], ":"), "",
@ hi s: preper_show(this.displays[ind], 0),
$string_utils:space(player:linelen(), "-"), "To look closer at one of

t hese objects, type 'show <object>'."});
thi s: set_category(ind);
endi f
el sei f (argstr)
pl ayer:tell ("No argunents to display, naybe you nean to 'show ",

argstr, "'?");
el se

player:tell _lines({@his:preper_show(this.displays[1l], 0),
$string_utils:space(player:linelen(), "-"), "To look closer at one of
the objects, type 'show <object>'."});
endi f

"Last nodified Thu Jun 29 15:07:51 1995 EDT by U f (#238@U_Mo-
East).";

@erb #185:" @dd-cat *egory" any any any "rd"
@r og #185: @add- cat egory
"Usage: @dd-cat*egory <category name>";
"Makes a new category for addi ng displays."
if (!$permutils:controls(player, this))
return player:tell (E_PERM;
el sei f (this.single)
return player:tell ("The roomis in single nodus.");
el seif (argstr in this.nanes)
return player:tell (argstr,
el se
this.nanes = {@his. nanes, argstr};
this.displays = {@his.displays, {}};
pl ayer:tell ("Category \"", argstr, "\" added.");
endi f

"Last nodified Wed Jun 28 12:31:39 1995 EDT by U f (#238@U_Mo-
East).";

is already a category.");

© Anna Cicognani, September 1998, PhD Thesis, Appendices 286

@erb #185:"@m cat*egory" any any any "rd"
@rog #185: @ m cat egory
"'@mcat*egory <category nane> Renoves that category.";
if (!$permutils:controls(player, this))

return player:tell (E_PERM;
el sei f (this.single)

return player:tell ("The roomis in single nodus.");
elseif (!(cat = this:find_cat(argstr)))

return player:tell(argstr, " is not a category.");
el se

this.names = listdel ete(this.nanmes, cat);

this.displays = listdel ete(this.displays, cat);

if (length(this.displays) == 0)
this.displays = {{}};
endi f
pl ayer:tell ("Category renoved.");
endi f

"Last nodified Tue Jun 27 13:09: 01 1995 EDT by Kris_F (#16723@WU_Moo-
East).";

@erb #185:"show' any any any "rd"
@r og #185: show
"Usage: show <object> [on category]"”;

"Checks for .generic_parent to decide whether to di splay descendents
nunmber or not.";

if (!dobjstr)
return player:tell ("You need to specify an object to look at.");
el seif (!this.single)
if (!(ind = $string_utils:index_delimted(argstr, "on")) & !(cur =
this:get_category()))
return player:tell ("Usage: show <object> on <category>");
elseif (!(cat =this:find _cat(catstr = argstr[ind +
3..length(argstr)])) && ind)
what = $string_utils:is_nuneric(catstr) ?
$string_utils:english_ordinal (catstr) | tostr("\"", catstr, "\"");
pl ayer:tell ("There is no ", what, " category to look at.");

return player:tell ("Type 'displays' for a listing of avail able
categories.");

el se
object = this:match_di sp(dobjstr, cat ? cat | cur);
cat = cat ? cat | cur;
endi f
el se
object = this:match_di sp(dobjstr);
cat = 1,
endi f
linelen = player:linelen();
if (typeof(object) !'= OBJ)

i f (object)
out = {};
for o in (object)
out = {@ut, tostr($string utils:left(tostr(" ", oin
this.displays[cat], ")"), 4), " ", o:title())};
endf or

© Anna Cicognani, September 1998, PhD Thesis, Appendices 287

player:tell ("l don't know which of the followi ng you were referring
to:");
player:tell _lines($string_utils:columize(out, 2, linelen));
return;
el se
return player:tell ("l don't know what object you are referring to
with\"", dobjstr, "\".");
endi f
el seif (object == $failed_natch)
if ('this.single)
if ($string_utils:is_numeric(dobjstr))

pl ayer:tell ("There is no
$string_utils:english_ordinal (dobjstr), " object in the "
this.nanes[cat], " category.");

player:tell ("Type "display ", this.nanmes[cat], "' to list the
objects in that category.");
el se
player:tell ("\"", dobjstr, "\" doesn't match any object in the ",
this.nanes[cat], " category.");
endi f
el se

if ($string_utils:is_numeric(dobjstr))

pl ayer:tell ("There is no

$string_utils:english_ordinal (dobjstr), " object in the displays.");
pl ayer:tell ("Type 'displays' to list the displayed objects.");
el se
pl ayer:tell ("\"", dobjstr, "\" doesn't match any object in the
di spl ays.");
endi f
endi f
return;
endi f
player:tell ($string_utils:space(linelen, "-"));
pl ayer:tell ("Name: ", object.nane, " (", object, ")");
pl ayer:tell ("Oaer: ", object.owner.nane, " (", object.owner, ")");
pl ayer:tell ("Parent: ", parent(object).nane, " (", parent(object),
"))

flags = "Flags: ";
if (is_player(object))

flags = tostr(flags, "player ", object.w zard ? "wizard " | "",
obj ect. progranmer ? "programmer " | "", object.builder ? "builder " |
")
endi f
pl ayer:tell (flags, object.r ? "readable " | "", object.f ? "fertile "
"', object.w? "witable" | "");

if ($object utils:isa(object, $note))
"....This checks to see if the object is a note....";
player:tell ($string_utils:space(linelen, "-"));
obj ect: | ook_sel f();
obj ect:read();
el seif ($object_utils:isa(object, $mail _recipient) &k args[1] in
properties(this))
"....This checks to see if the object is a mail folder....";
‘....and if a particular nessage is to be displayed"
pl ayer:tell ($string_utils:center("Letter", linelen, "-"));

© Anna Cicognani, September 1998, PhD Thesis, Appendices 288

end = this.(args[1]) + 1;

obj ect: display_seq_full ({this.(args[1]), end}, "");
el se

player:tel |l ("Verbs: ", length(verbs(object)));

if (this.generic_parent != $feature || (this.generic_parent ==
$f eature && children(object)))

pl ayer:tell (" Descendants:
| engt h($obj ect _util s: descendant s(object)));

endi f

ancestor = {};

foo = object;

while (foo !'= #1)
foo = parent (foo);

ancestor = |istappend(ancestor, foo.nane);
endwhi | e
pl ayer:tell ("Ancestory: ", $string_utils:english_list(ancestor));

pl ayer:tell();

obj ect: | ook_sel f();
endi f
prop = tostr(object);
if ($object_utils:has_property(this, prop))

player:tell ($string_utils:center("Additional Coments", linelen
"))

for lines in (this.(prop))

pl ayer:tell (lines);

endf or
endi f
player:tell ($string_utils:center("finished", linelen, "-"));
if (this.generic_parent != $feature)

hashel p = $object _utils:has_call abl e_verb(object, "hel p_nmsg") &&
obj ect: hel p_nsg();

hasabout = $object _utils:has_call able_verb(object, "about_text") &&

obj ect: about _text();

hel p = $obj ect _utils: has_property(object, "hel p_nsg") &&
obj ect . hel p_mnsg;

about = $object_utils:has_property(object, "about_text") &&
obj ect . about _t ext;

if (help || about || hashelp || hasabout)
help = help || hashelp
about = about || hasabout;
player:tell ("For nore information type ", help ? tostr("\"help ",
object, "\"") | "", help & about ? " and " | "", about ?
tostr("\"@bout ", object, "\"") | "");
endi f
el se

i f (object.about_text &% (hasabout =

$obj ect _utils:has_call abl e_verb(object, "about_text")))
player:tell ("For additional information type \"@bout ", object,

)

endi f
endi f
"Last nodified Thu Cct 17 19:49:56 1996 EDT by EricM
(#5058@U_Mai nMOO) . ";

© Anna Cicognani, September 1998, PhD Thesis, Appendices

289

@erb #185:" @egi ster*-object"” any any any "rd"

@rog #185: @ egi st er - obj ect

"Usage: register <object> [for category]";

"Regi sters a new object in this rooms displays. <object> is the

object to register. [for category] is required if this roomhas nore
than one category to display."

i f ($command_utils: object_natch_failed(object =
pl ayer: my_mat ch_obj ect (dobj str), dobjstr))
return;
el se
if ('this.single)
if (iobjstr &% (cat = this:find_cat(iobjstr)))
if (!'this:check_player(player, object, cat))
pl ayer:tell (this.not_control _nsg);
el sei f (!this:check_object(player, object))
pl ayer:tell (this.not_add_nsg);

el se
t hi s: add_obj ect (obj ect, cat);
pl ayer:tell ("You register ", object.nane, " (", tostr(object),
"))
if (this.public_library)
info = tostr("Registered by ", player.nane, "(", player, ")
at ", ctime(), ".");

$mai | _agent: send_nessage(this, $system mail _recipient,
tostr(object.nane, "(", object, ") registered."), info);

endi f
endi f
el seif (iobjstr)
pl ayer:tell ("\"", iobjstr, "\" is an unrecogni zed category.");
el se
pl ayer:tell ("Usage: register <object> for <category>");
endi f

el sei f (!this:check_player(player, object))
pl ayer:tell (this.not_control _nsg);

el sei f (!this:check_object(player, object))
pl ayer:tell (this.not_add_nsg);

el se
t hi s: add_obj ect (obj ect) ;
pl ayer:tell ("You register ", object.nane, " (", tostr(object),
"))

if (this.public_library)
i nfo tostr("Regi stered by ", player.nane, "(", player, ") at "
ctime(), ".");
$mai | _agent: send_nessage(this, $system mail _recipient,
tostr(object.nane, "(", object, ") registered."), info);
endi f
endi f
endi f

"Last nodified Wed Jun 28 12:50:35 1995 EDT by U f (#238@U_Mo-
East).";

@erb #185:" @enove*-object" any any any "rd"
@r og #185: @ enove- obj ect
"Usage: @enove <object> [from category]";

© Anna Cicognani, September 1998, PhD Thesis, Appendices 290

"To renove an object fromthis roons displays. <object> is the object
to renove. [fronromcategory] is required, if this roomhas nore than
one category to display in."
if (!dobjstr)
return player:tell ("Usage: @enove <object> [from <category>]");
el seif (!'valid(object = this:mtch_disp(dobjstr)))
if ($command_utils:object_match_failed(object =
pl ayer: my_mat ch_obj ect (dobj str), dobjstr))
return;
endi f
endi f
if ('this.single)
if (iobjstr &% (cat = this:find_cat(iobjstr)))
if (!'this:check_player(player, object, cat))
pl ayer:tell (this.not_control _nsg);

el se
thi s: rmobject (object, cat);
pl ayer:tell ("You renove ", object.name, " (", tostr(object),
"))
if (this.public_library)
info = tostr("Renoved by ", player.nane, "(", player, ") at ",
ctime(), ".");

$mai | _agent : send_nessage(this, $systemnmil _recipient,
tostr(object.nanme, "(", object, ") renpved."), info);

endi f
endi f
el sei f (iobjstr)
player:tell ("\"", iobjstr, "\" is an unrecogni zed category.");
el se
pl ayer:tell ("Usage: renove <object> from <category>");
endi f

el sei f (!this:check_player(player, object))
pl ayer:tell (this.not_control _nsg);

el se
t hi s: rm obj ect (obj ect);
pl ayer:tell ("You renove ", object.nane, " (", tostr(object), ").");
if (this.public_library)
info = tostr("Renoved by ", player.nane, "(", player, ") at ",
ctinme(), ".");

$mai | _agent : send_nessage(this, $systemnmil _recipient,
tostr(object.nanme, "(", object, ") renmpved."), info);
endi f
endi f
"Last nodified Sun Jul 6 04:32:30 1997 EDT by EricM
(#5058@U_Mai nMOO) . ";

@erb #185: "preper_show' this none this "rxd"

@r og #185: pr eper _show

"CGetting a list of object nunbers. Return a list of strings telling
somet hi ng about them";

out = {};
for i in[1l..len = length(objects = args[1])]

© Anna Cicognani, September 1998, PhD Thesis, Appendices 291

out = {@ut, tostr(" ", i, ")",
$string utils:space(length(tostr(len)) + 3 - (length(tostr(i)) + 1),
"), tostr(objects[i].nanme))};
endf or
return $string_utils:columize(out, 2, player:linelen());
"Last nodified Tue Jun 27 16:31:20 1995 EDT by Kris_F (#16723@WU_Moo-
East).";

@erb #185:"find_cat" this none this "rxd"
@rog #185:find_cat
if ((ind = $string_utils:find_prefix(args[1], this.names)) != 0)
return ind;
elseif ($string utils:is_nuneric(cat = args[1l]) && ((ind = tonun(cat))
>0 && ind <= length(this.nanmes)))
return ind;
el se
return O;
endi f

"Last nodified Tue Jun 27 08:20: 34 1995 EDT by Kris_F (#16723@WU_Moo-
East).";

@erb #185:"add_object” this none this "rxd"
@rog #185: add_obj ect

if (caller !'=this)
return E_PERM
endi f

pos = {@rgs, 1}[2];
if (!'this.displays)
this.displays = {{}};
endi f
thi s. di spl ays[pos] = setadd(this.displays[pos], args[1]);
"Last nodified Tue Jun 27 08:02:39 1995 EDT by Kris_F (#16723@WU_Moo-
East).";

@erb #185:"rmobject"” this none this "rxd"
@rog #185:rm obj ect

if (caller !'=this)
return E_PERM
endi f

pos = {@rgs, 1}[2];

thi s. di spl ays[pos] = setrenove(this.displays[pos], args[1]);

"Last nodified Tue Jun 27 07:59:43 1995 EDT by Kris_F (#16723@WU_Moo-
East).";

@erb #185:"match_di sp" this none this "rxd"
@rog #185: match_di sp
disp = this.displays[{@rgs, 1}[2]];
if ((place = tonun(subject = args[1])) !'= 0)
if (place > 0 & place <= | ength(disp))
return disp[place];
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 292

endi f
exact _match = partial _match = {};
for object in (disp)
if (valid(object))
if (subject in (str_list = object.aliases))
exact _match = setadd(exact _match, object);
el se
for string in (str_list)
if (index(string, subject))
partial _match = setadd(partial _match, object);

endi f
endf or
endi f
endi f
endf or
return | ength(exact _match) == 1 ? exact_match[1] | (!exact_match ?
length(partial _match) == 1 ? partial _match[1] | (!partial_match ?

$failed_match | partial _match) | exact_match);
"Last nodified Wed Jun 28 04:52:44 1995 EDT by Kris_F (#16723@WU_Moo-
East).";

@erb #185:" @enane-cat *egory" any to any "rd"
@r og #185: @ enamne- cat egory
"Usage: @enane-cat*egory <category> to <new nanme>"
"Changes the nane for that category. Use this at least for the first
cat egory, when making a single display into a nultiple display.";
if (!$permutils:controls(player, this))
return player:tell (E_PERM;
el sei f (this.single)
return player:tell ("The roomis in single category nodus.");
elseif (!(cat = this:find_cat(dobjstr)))
return player:tell (dobjstr, " not a category.");
el seif (iobjstr in this.nanes)
return player:tell (iobjstr,

is already as a category nane.");

el se

this.names[cat] = iobjstr;

pl ayer:tell ("Nane changed.");
endi f

"Last nodified Wed Jun 28 12:54:37 1995 EDT by U f (#238@U_Mo-
East).";

@erb #185:"hel p_nsg" this none this "rxd"
@r og #185: hel p_nsg
if (this.single)
nmeg = this:get_nessage("hel p_single_nsg");
i f (player. progranmmer)
if (!'this:check_player(player))
nmeg = {@sBg, @his:get_nmessage("register_nsg")};
el se
nmeg = {@sg, @his:get_nessage("hel p_register_nsg")};
endi f
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices

293

el se
nmeg = this:get_nessage("hel p_nulti_nsg");
i f (player. progranmmer)
if (!'this:check_player(player))
nmeg = {@sg, @his:get_nessage("register_nsg")};
el se
nmeg = {@sg, @his:get_nmessage("register_multi_hel p_nsg")};
endi f
endi f
endi f
if ((check = this:get_nessage("hel p_check_nsg")) && pl ayer. programmrer)
msg = {@sg, @heck};
endi f
if ($permutils:controls(player, this))
nmeg = {@sg, @his:get_nmessage("hel p_control _nmsg")};
endi f
return nsg;

"Last nodified Wed Jun 28 15:22:30 1995 EDT by U f (#238@U_Mo-
East).";

@erb #185:"get _nmessage" this none this "rxd"

@rog #185: get _nessage

return typeof (nsg = this.(args[1])) == STR ? {nmsg} | nsgQ;

"Last nodified Tue Jun 27 09:57:42 1995 EDT by Kris_F (#16723@WU_Moo-
East).";

@erb #185: "hi dden_verbs" this none this "rxd"
@r og #185: hi dden_ver bs
if (caller == this || $permutils:controls(caller_perns(), this))
hi dden = pass(@rgs);
loc = $code_utils:verb_loc();
if (this.single || !'$permutils:controls(args[1], this))
hi dden = set add(hidden, {loc, "@dd-cat*egory", verb_args(loc,
"@dd- category")});
hi dden = setadd(hidden, {loc, "@mcat*egory", verb_args(loc, "@m
category")});
hi dden = setadd(hidden, {loc, "@ enanme-cat*egory", verb_args(loc,
" @enane-cat egory")});
endi f
if (!$permutils:controls(args[1l], this))
hi dden = setadd(hidden, {loc, "@lear", verb_args(loc, "@lear")});
endi f
if (!this:check_player(args[1]))
hi dden = setadd(hidden, {loc, "register", verb_args(loc,
"register")});
hi dden = setadd(hidden, {loc, "renove", verb_args(loc, "renove")});
endi f
return hidden;
el se
return E_PERM
endi f
"Last nodified Tue Jun 27 14:34:33 1995 EDT by Kris_F (#16723@WU_Moo-
East).";

© Anna Cicognani, September 1998, PhD Thesis, Appendices 294

@erb #185:" @l ear" none none none "rd"
@rog #185: @l ear

"‘@lear' This will clear all displays in this room Be very
careful | .";

if (!$permutils:controls(player, this))
return player:tell (E_PERM;
el seif (!'$command_utils:yes_or_no(tostr("This will clear all displays

in", $string_utils:nn(this), ", are you absolute sure you will do
this?")))

return player:tell ("Aborted..");
el se

this.displays = {{}};

this.nanes = {"No nane"};

player:tell ("D splays cleared.");
endi f

"Last nodified Tue Jun 27 14:53:02 1995 EDT by Kris_F (#16723@WU_Moo-
East).";

@erb #185:"set _category” this none this "rxd"
@rog #185: set_category
if ('this.single)
new = args[1];
if (index = $list_utils:iassoc(player, this.current_category))
this.current_category[index][2] = new,
el se
this.current_category = |istappend(this.current_category, {player
new) ;
endi f
endi f

"Last nodified Wed Jun 28 13:36:51 1995 EDT by U f (#238@U_Mo-
East).";

@erb #185:"get _category” this none this "rxd"
@r og #185: get_category
if ('this.single)
if (entry = $list_utils:assoc(player, this.current_category))
cat = entry[2];

el se
cat = 1;
endi f
return cat;
endi f

"Last nodified Wed Jun 28 13:36:56 1995 EDT by U f (#238@U_Mo-
East).";

@erb #185:"enterfunc" this none this "rxd"
@rog #185: enterfunc

pass(@irgs);

this:set_category(l);

© Anna Cicognani, September 1998, PhD Thesis, Appendices 295

"Last nodified Wed Jun 28 13:37:09 1995 EDT by U f (#238@U_Mo-
East).";

@erb #185:"exitfunc" this none this "rxd"

@rog #185: exitfunc

pass(@rgs);

if (entry = $list_utils:assoc(player, this.current_category))
this.current_category = setrenove(this.current_category, entry);

endi f

"Last nodified Wed Jun 28 13:37:09 1995 EDT by U f (#238@U_Mo-
East).";

@erb #185:"nmore_info_for_web" this none this "rx
@rog #185:nore_info_for_web
"more_info_for_web(who, rest STR, search STR) -> html doc frg LIST";

"Returns a formatted |ist of objects on displayor a |list of categories
avail abl e, as requested"

text = {};
rest = args[2];
search = $web_utils:url _decode(args[3]);
webcode = $web_utils: get _webcode();
if (this.single || (rest == "category" && search in this.nanes))
"show listing of displayed objects"
category = this.single ? 1 | search in this. nanes;
link = tostr("<A HREF=\"&LOCAL_LINK; /", $object_browser: get_code(),
"/ browse_or_edit/browse/");
text = {@ext, "Objects on display:"};
for itemin (this.displays[category])
if (itemicon)
icon = tostr("<IM5 SRC=\"", itemget_icon(), "\" WDTH=32>");
el se
icon = "";
endi f
text = {@ext, tostr("", icon, link, tonun(item, "\">",
$string_utils:nn(item, "</ A>")};
endf or
text = {@ext, "</ UL>"};
if ('this.single)
text = {@ext, tostr("<A HREF=\"&L OCAL_LINK;/", webcode, "/",
tonum(this), "#focus\">[Show category list]J<P>")};
endi f
elseif (!(rest || this.single))
"show listing of avail able categories”
link = tostr("<A HREF=\"&LOCAL_LINK;/", webcode, "/", tonun{this),
"/ category?");
text = {@ext, "Avail abl e categories are: </ B>"};
for category in (this.nanmes)
text = {@ext, tostr("", link, $web_utils:url_encode(category),
"#focus\">", category, "")};
endf or
text = {@ext, ""};
el se

© Anna Cicognani, September 1998, PhD Thesis, Appendices 296

text = {@ext, tostr("Sorry, this roomdoesn't seemto understand
what was requested of it. Please report the problemto ",
$code_utils:verb_perns().nanme, ".")};
endi f
return text;
"Last nodified Fri Nov 28 15:31:39 1997 EST by Creeper

(#101@Xey_Campus).";

@erb #185:"init_for_core" this none this "rx
@rog #185:init_for_core

"Copi ed from The System Cbject (#0):init_for_core by Adm nistrator (#2)

Wed May 27 14:24:20 1998 EST";
if (caller_perns().w zard)

pass();

if ("server_started" in verbs(this))
code = {"callers() || ($last_restart_tine =time());"};
set _verb_code(this, "server_started", code);

endi f

if ("name_l ookup_failed" in verbs(this))
del ete_verb(this, "name_l| ookup_failed");
endi f
if ("uptinme_since" in verbs(this))
del ete_verb(this, "uptinme_since");
endi f
if ("do_command"” in verbs(this))
del ete_verb(this, "do_comand");
endi f
$shut down_nessage = "";
$shut down_tine = 0;
$dunp_i nterval = 3600;
$gripe_recipients = {player};

$class_registry = {{"generics", "CGeneric objects intended for use as

the parents of new objects", {$room S$exit, $thing, $note, $letter
$cont ai ner, $root_class, $player, $prog, $wiz, $generic_editor

$mai |l _recipient, $mail _agent}}, {"utilities", "Qbjects holding usefu

gener al - pur pose verbs", {$string utils, $gender utils, $trig utils,
$time_utils, $match_utils, $object_utils, $lock utils, $list_utils,
$command_utils, $code_utils, $permutils, $building_utils}}};

set _verb_code(this, "user_connected", verb_code(this,
"user _connected(core)"));

del ete_verb(this, "user_connected(core)");
endi f

----- End of @rchive #185

$connection

@rchive #318 with verbs and properties
----- Begi nni ng of @rchive #318

@reate #213 named Connection Prototype

; #318. ("active") = 0
; #318. ("entrances") = {#313}

© Anna Cicognani, September 1998, PhD Thesis, Appendices

297

; #318. (" bl essed_object") = #-1

; #318. (" bl essed_t ask") = 1996376525

; #318. ("exi ts") = {#305}

; #318. ("invited") = {}

; #318. ("instruction") = {"Use this prototype to connect roons. Exits
can be added with @dd-exit, and will be showed with the description."
“You can programtined events, using scripts. See help @cripts.”, "In
this area, you can set an atnosphere and other little tricks. See help
here for further inforantion."}

; #318. ("prototype") = #318

; #318. ("key") = 0

; #318. ("al i ases") = {"Connection Prototype"}

; #318. ("description") = {"This is the prototype for a connection

area.", "You can use a child of this if you want to build, for exanple
a corridor, or alift, or a hall, or a place that |eads to other
pl aces. "}

; #318. (" obj ect _si ze") = {5664, 896860816}
; #318. ("web_cal I s") = 26
; #318. ("l ast _nodi fi ed")
; #318. ("creati on_date")

875164631
875164631

@erb #318:"init_for_core" this none this "rx
@rog #318:init_for_core

"Copi ed from The System Cbject (#0):init_for_core by Adm nistrator (#2)
Thu Sep 25 16:56:29 1997 EST";

if (caller_perns().w zard)

pass();

if ("server_started" in verbs(this))
code = {"callers() || ($last_restart_tine =tinme());"};
set _verb_code(this, "server_started", code);

endi f

if ("name_l ookup_failed" in verbs(this))
del ete_verb(this, "name_l ookup_failed");
endi f
if ("uptime_since" in verbs(this))
del ete_verb(this, "uptinme_since");
endi f
if ("do_command"” in verbs(this))
del ete_verb(this, "do_comand");
endi f
$shut down_nessage = "";
$shut down_tine = 0;
$dunp_i nterval = 3600;
$gripe_recipients = {player};
$class_registry = {{"generics", "CGeneric objects intended for use as
the parents of new objects", {$room S$exit, $thing, $note, $letter
$cont ai ner, $root_class, $player, $prog, $wiz, $generic_editor
$mai |l _recipient, $mail _agent}}, {"utilities", "Qbjects holding usefu
gener al - pur pose verbs", {$string utils, $gender utils, $trig utils,
$time_utils, $match_utils, $object_utils, $lock utils, $list_utils,
$command_utils, $code_utils, $permutils, $building_utils}}};
set _verb_code(this, "user_connected", verb_code(this,
"user_connected(core)"));
del ete_verb(this, "user_connected(core)");
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices 298

----- End of @rchive #318

$building

@rchive #531 with verbs and properties
----- Begi nni ng of @rchive #531

@reate #185 nanmed Buil di ng Prototype

; #531. ("current _category") = {}

; #531. ("entrances") = {#379}

; #531. (" bl essed_object") = #-1

; #531. (" bl essed_t ask") = 859465688

; #531. ("exi ts") = {#281}

; #531. ("invited") = {}

; #531. ("prototype") = #531

; #531. ("key") = 0

; #531. ("al i ases") = {"Building Prototype"}

; #531. ("description") = {"This is a prototype for a building.", "You
can use this to define a whole building, |ike for exanple, a post
office, or a Faculty building.", "Add exits and entrances which lead to

the building roons, and use the directory to explain their
destination."}

; #531. (" obj ect _size") = {3269, 896860816}
; #531. ("web_cal I s") = 17
; #531. ("l ast _nodi fi ed")
; #531. ("creati on_date")

875164638
875164638

@erb #531:"init_for_core" this none this "rx
@rog #531:init_for_core

"Copi ed from The System Cbject (#0):init_for_core by Adm nistrator (#2)
Thu Sep 25 16:56: 10 1997 EST";

if (caller_perns().w zard)

pass();

if ("server_started" in verbs(this))
code = {"callers() || ($last_restart_tine =tinme());"};
set _verb_code(this, "server_started", code);

endi f

if ("name_l ookup_failed" in verbs(this))
del ete_verb(this, "name_l ookup_failed");
endi f
if ("uptinme_since" in verbs(this))
del ete_verb(this, "uptinme_since");
endi f
if ("do_command"” in verbs(this))
del ete_verb(this, "do_comand");
endi f
$shut down_nessage = "";
$shut down_tine = 0;
$dunp_i nterval = 3600;
$gripe_recipients = {player};

© Anna Cicognani, September 1998, PhD Thesis, Appendices 299

$class_registry = {{"generics", "CGeneric objects intended

for use as

the parents of new objects", {$room S$exit, $thing, $note, $letter
$cont ai ner, $root_class, $player, $prog, $wiz, $generic_editor

$mai |l _recipient, $mail _agent}}, {"utilities", "Cbjects holdi

ng useful

gener al - pur pose verbs", {$string utils, $gender utils, $trig utils,
$time_utils, $match_utils, $object_utils, $lock_ utils, $list_utils,
$command_utils, $code_utils, $permutils, $building_utils}}};

set _verb_code(this, "user_connected", verb_code(this,
"user _connected(core)"));

del ete_verb(this, "user_connected(core)");
endi f

----- End of @rchive #531

$mobile

@rchive #881 with verbs and properties
----- Begi nni ng of @rchive #881

@reate #254 nanmed Mobil e Area Prototype

; #881. ("insi de_description") = {"A silent place.", "A snal
glittering buttons seens to vanish as you try to touch it.",

array of
"I nsi de

here |l ooks a lot |ike a dangerous place.", "You can navigate in the MXO
using the '"fly' command.", "See the help for nore information."}

; #881. ("active") = 0

; #881. ("entrances") = {#882}

; #881. (" bl essed_object") = #-1

; #881. (" bl essed_t ask") = 955260146

; #881. ("exi ts") = {#883}

; #881. ("invited") = {}

; #881. ("key") = 0

; #881. ("al i ases") = {"Mobile Area Prototype"}

; #881. ("description") = {"It | ooks |ike sonething which can start
noving at any tine.", "It is very silent here, and sone gl owi ng buttons
can be seen in front of you, but as you try to touch them they

di sappear. "}
; #881. ("obj ect _size") = {6176, 896860816}
; #881. ("web_cal I s") = 24
; #881. ("l ast _nodi fi ed")
; #881. ("creati on_date")

892790119
892790119

@erb #881:"init_for_core" this none this "rx"
@rog #881l:init_for_core

"Copi ed from The System Cbject (#0):init_for_core by Adm nistrator (#2)

Fri Apr 17 15:16:45 1998 EST";
if (caller_perns().w zard)

pass();

if ("server_started" in verbs(this))
code = {"callers() || ($last_restart_tinme =time());"};
set _verb_code(this, "server_started", code);

endi f

if ("name_l ookup_failed" in verbs(this))
del ete_verb(this, "name_l ookup_failed");
endi f

© Anna Cicognani, September 1998, PhD Thesis, Appendices

300

if ("uptinme_since" in verbs(this))
del ete_verb(this, "uptinme_since");
endi f
if ("do_command" in verbs(this))
del ete_verb(this, "do_comand");

endi f

$shut down_nessage = "";

$shut down_tine = 0;

$dunp_i nt erval 3600;

$gripe_recipients = {player};

$class_registry = {{"generics", "CGeneric objects intended for use as
the parents of new objects", {$room S$exit, $thing, $note, $letter
$cont ai ner, $root_class, $player, $prog, $wiz, $generic_editor
$mai |l _recipient, $mail _agent}}, {"utilities", "Qbjects holding usefu
gener al - pur pose verbs", {$string utils, $gender utils, $trig utils,
$time_utils, $match_utils, $object_utils, $lock utils, $list_utils,
$command_utils, $code_utils, $permutils, $building_utils}}};

set _verb_code(this, "user_connected", verb_code(this,
"user_connected(core)"));

del ete_verb(this, "user_connected(core)");
endi f

----- End of @rchive #881

Families
@amly #3
Ancest ors/ descendants informati on on generic room (#3):
{30} Root Class (#1)ciiiiuuuueuee...: Admnistrator (#2)
{4} generic room (#3) Admnistrator (#2)
{5} Generic Editor (#49) Hacker (#36)
Verb Editor (#48) Hacker (#36)
{1} Note Editor (#47) v Hacker (#36)
Section Editor (#441) Hacker (#36)
Mail Room (#46) Hacker (#36)
HTML Editor (#137) BioGate-owner (#113)
Design Studio (#1048)cvveu......:. Creeper (#101)
{2} Generic Inproved Room (#184): Admnistrator (#2)
{4} Generic Inmproved Roomw th Cl eaning ++ (#206) ...: Adm nistrator (#2)
Model | nmproved Roomwi th Cl eaning and Scripts (#237): Owmner (#107)
{13} Social Area Prototype (#213): Administrator (#2)
{3} Generic |Inproved Portable Room (#216) ..: Adm nistrator (#2)
{1} CGeneric Inproved Tardis (#217): Administrator (#2)
{1} Tardis Portable Room (#254): Omer (#107)
{3} Mobile Area Prototype (#881): Adm nistrator (#2)
the Flying Carpet (#514): Oaner (#107)
I unchbox (#544) anti (#540)
wafting clouds (#717): annore (#284)
{1} Basic Portable Room (#253): Omer (#107)
a globe (#888) Creeper (#101)
DU Portal (#869) Creeper (#101)
Model Lively Room (#246) Oser (#107)
{10} Connection Prototype (#318): Admnistrator (#2)
Classrooms (#257) Omner (#107)
The Hall (#61): Admnistrator (#2)
Office Area (#188) Omner (#107)
Resources Room (#572): Administrator (#2)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 301

Professional Area (#473)t (#107)
Staff Roons (#258)t (#107)
Student Rooms (#435)t (#107)
Prototypes Area (#521): Administrator (#2)
The Pit (#993) ... (#757)
LINKS (#999)cuuiiiiiiewunnea....: dinesh (#751)
The Sneephole (#653): sneep-the-beep (#182)
The Green Lake (#191) Creeper (#101)
The Studio (#821) it (#615)
Meeting Room (#198) (#107)
anti-room (#541) (#540)
The Word (#354) annore (#284)
Alivel (#452) Creeper (#101)
LendLease Area (#498) (#306)
parkl (#925) (#754)
Foyer of Johnb's place (#771): (#757)
{7} Learning Area Prototype (#211): Adnministrator (#2)
Model Classroom (#243) (#107)
Theory and Practice Room (#528): (#107)
Comput er - Based Desi gn Room (#632): (#107)
Al in Design (#436) (#107)
Communi cations Elective (#598): (#107)
mary's study (#351) (#297)
Dave's Tenporary Testing Chamber (#104): (#100)
{24} Private Room Prototype (#434): Administrator (#2)
Tea Room (#558)cc......> nick (#306)
Laboratory (#626) Brad (#226)
Eric's Nook (#576) i EricM (#94)
Testoffice (#689) nick (#306)
Generic Ofice (#470)> nick (#306)
Ni ck's Design Lab (#475) nick (#306)
Creeper's PhD Design Studio (#195): Creeper (#101)
{39} Ofice Prototype (#693): Admnistrator (#2)
brett's office (#826) brett (#745)
Toni's office (#410) it (#672)
mxer (#392)t Creeper (#101)
Brad's Office (#231) Brad (#226)
Fyock's Office (#276) Fyock (#223)
Tims Ofice (#659) Tim(#617)
X-15 (#307) i e ... Cerard (#668)
1226's Ofice (#496) 1226 (#418)
The Mouse Hole (#479): hong (#340)
jeya's office (#448) jeya (#304)
DavidS's Ofice (#394): davidS (#286)
Wngy's Tent (#535) Wngy (#534)
Joe's OFfice (#384)t Joe (#332)
Moto's OfFfice (#443) nmoto (#335)
phi bbsie's office (#731): Phibbsie (#734)
Mary's OfFfice (#221) it Mary (#297)
The Inner Sanctum (#592): Brad (#226)
Nick's OFfice (#308) nick (#306)
Jane's Office (#278) jane (#341)
Mot Mot's Web (#449) motnot (#383)
Raul's Ofice (#353)t (#311)
Rich's sanctum (#621) Rich (#615)
Tims Workshop (#629) Tim(#617)
Jose's Place (#396) jose (#342)
Anmore's Office (#323) annore (#284)
The Primal Chaos (#891): Janus (#893)

© Anna Cicognani, September 1998, PhD Thesis, Appendices

302

Kantor Jokse (#801): Jokse (#755)

Gl's cyberoffy (#397) gil (#760)
design lab (#772): dinesh (#751)
studio (#892) neha (#759)

space (#909) neha (#759)
Designer's Heaven (#913) boss (#756)

Casis (#916)t boss (#756)

Tea House (#965) tony (#762)

The Pad (#1002) joOhnb (#757)

dunny (#1009) Blade (#743)
Scott's Office (#829) Scott (#767)

Pol's Palace (#1034)t pol (#770)
Ofice ONTON (#244) tommy (#753)
studyl (#897) i .. kenl (#754)
Jokse' sMusi kRoom (#588): Jokse (#755)
Jane's Ofice (#741) janec (#747)
studio qui (#509) Qqui (#863)

The Lair (#337) alleycat (#746)

The Chamber (#948) Blade (#743)
tory's place (#921) Tory (#763)
Eddie's_Virtual _Studio (#766): Eddie (#744)
hung's virtual design studio (#959): hung (#749)
Stevie's retreat (#414) steve (#761)
dark's_office (#768): dark (#752)

The Pit (#998)cc....... joOhnb (#757)
Ceof f's Workroom (#679) geoff (#748)
private box (#850) gm (#750)
living area (#1038): Eddie (#744)
pop_s office (#794) pop (#758)
Model Inmproved Room (#234) Owner (#107)
Model Portable Roons (#249) Os;er (#107)
{4} Storage Area Prototype (#185): Admnistrator (#2)
{2} Building Prototype (#531): Admnistrator (#2)
Research Dungeon (#905): dinesh (#751)
Boss' Qasis (#525)o...... boss (#756)
bjects Library (#201) Onner (#107)
Docunents Library (#562): Administrator (#2)
herb garden (#856) alleycat (#746)

* 1 ancestor, 124 descendants found

© Anna Cicognani, September 1998, PhD Thesis, Appendices 303

APPENDI X E. LambdaM OO *B:Arbitration

Arbitration (#50392)

by Gunp (#122)
[Last edited before the system kept track of the tine]

This petition creates a nethod for resol ving disputes in LambdaMOO
Most of the 'social problens' in LanbdaMOO can be seen as disputes
bet ween pl ayers: the conflict of one player's rights to expression

agai nst other player's rights to freedomfrom harrassnment, conficts
over building, RPG or whatever. By this petition

* Create a registry of volunteer arbitrators: MXers who vol unteer to
listen to the various sides in a dispute and deci de on an appropriate
resol uti on. Anyone can volunteer to be an arbitrator, subject to a few
qualifications |isted bel ow.

* Anyone involved in a dispute can explicitly call for "arbitration'
and nanme (only) one other party in the dispute.

* O her players can join in a dispute if they want, but they don't
get to choose the arbitrator. They're naned to nake sure their
poi nt of view is heard.

* The original disputants have a linmted period of time (48 hours) to
AGREE on an arbitrator for their case, fromanong arbitrators who agree
to volunteer to arbitrate the case. If those involved in a dispute
cannot agree on an arbitrator for their case, one will be chosen
randomy for them from anong arbitrators who had vol unteered to hear
the case within the 48 hour peri od.

* The arbitrator for a case has the power to call for alnost any action
WTH N THE MOO that is available, insofar as it only affects those

i nvolved in the dispute. For exanple, this would include @oading or
@ewting a character for any length of tine, nodifying their quota,
revealing their site information, recycling objects, etc. Arbitrators

can decide to not act at all, or to banish all participants in the
di spute, etc. The arbitrator can judge the person who 'called the
di spute as well, e.g., if the dispute was spurious.

* The arbitrator to a case can have access to all site and connect
i nformation of the parties involved in the dispute. Such access is
| ogged.

* Once an arbitrator is chosen and arbitration begins, the arbitrator
should try to hear all the sides of the dispute, but not delay deciding
unreasonably. Arbitrators are encouraged, but not required, to solicit
advi ce on the handling of the case fromothers. It's up to the
arbitrator to schedul e how they hear the case, what process they
fol | ow.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 304

* | f soneone invokes a dispute and the other party doesn't respond,

(for whatever reason: they haven't |ogged on, refuse to cooperate,

don't participate, etc.) the arbitrator can go ahead and nmake sone
decision in their absence. Such decisions should be reasonable for the
circunstances. (Presumably, this will be a 'randomy chosen’
arbitrator, since the other party didn't respond.)

* |t is possible to have a dispute with a guest. In that case, the
dispute is collectively with "all guests that come fromthat site'.

* The arbitrator has to wite a summary of the case, what they heard,
and what their decision is, and post it to a public place.

* An arbitration will '"tinme out' and be cancelled if no decision is
made within a reasonable period of tine. (2 weeks).

* There will be a delay (24 hour) between posting of a decision and the
carrying out of whatever action it contains. Al actions are |ogged in
a public place.

* There are sone qualifications for being an arbitrator. These
i ncl ude:
- Having connected to LanbdaMOO for a while (4 nonths).

- O course, nust volunteer for the job, not only "in general' but for
the specific arbitration

- No obvious conflict of interest (in particular, cannot come fromthe
same site as any of the participants in the dispute).

- Have registered as an arbitrator for a while before the dispute
is called (2 weeks).

The 'player' refers to a primary character; you shouldn't be able to
beat the system and judge yourself by faking multiple characters.

Wil e arbitrators decisions are not subject to appeal, they are subject
toreview if any five MXCers (otherwise qualified to be arbitrators)
vote to do so, they can overturn a judgenent. In addition, if a
judgenent is overturned, and ten additional qualified MXers vote to do
so, the arbitrator whose judgenent was overturned will be barred from
arbitrating again. (This is primarily a safeguard agai nst them bei ng
chosen randomly again.) The sanme conflict of interest restrictions
apply for voting here as apply for arbitrators decidi ng cases.
Judgenents can be overturned because they are too harsh, or the
arbitrator has a serious confict of interest but still didn't

di squalify thenselves, etc., or even because it isn't inplenmentable.

M nor elenents of this petition can be changed by a sinpler nmechani sm
than another petition: by a vote of 30 qualified MXers, new
qualifications for abitrators can be added, or any of the nunbers of
thresholds, tinme linmts can be changed, or minor changes nmade to the
procedure to add or shorten the del ays.

This petition | eaves out inplenentation details; initially, it could be
handl ed by mail, enforcenment could be handled by arbitrators asking the
wi zards to performvarious actions; but eventually, much of it can be
automated, with sone care to avoid abuse and nake sure records are
kept.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 305

This petition also doesn't contain any guidelines as to proper rules of
behavior; it is presuned that arbitrators will use good judgenent, and
t hei r understandi ng of conmon sense and manners. Arbitrators are
expected to respond with the smallest action necessary to resolve the
di spute, and the review process is intended as a way to insure that it
happens that way.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 306

APPENDIX F. Petition #7976 and relative messages

This petition was proposed on LambdaM OO in December 1997. Follows the text of the
petition and relative messages of comment.

RoonDescri ptions (#7976)
by creeper (#106368)
[Last edited on Thursday, Decenber 18, 1997 at 2: 04 pnj

This proposal is for the inplenentation of a new systemto all ow
qualified players (designers) to control and regul ate the design of the
house

PREM SES
- The @lescribe command is the only design tool available in the MO

- Certain players should be able to nodify roons descriptions, ie
desi gn t hem

- The Design capabilities should be given to experienced players, as
the arbitrators are, elected in the Design Board, via public
candi datures and el ecti ons.

- The buidling of new public roons should pass the Design Board vote
and fulfil Design specifications

| MPLEMENTATI ON

- a new class of players: designers

- a new set of properties for all the roomherarchy to allow themto be
" desi gnabl e’ by the above cl ass of players

- a new set of commands (@esi gn, @ketch) which allow the designer
class to work nore easily

- a set of design specifications should be witten and they shoul d work
simlarly to the ballot/petition system

- a Design Board, whose conponents will revise design projects for new
public roons, and mmjor changes to the spaces in the house

Note that this proposal could represent a major step in the MO
devel opnent, focusing on the Design aspects of a virtua

pl ace/reality/ world.

However, citizens would be still free to design their own spaces and
obj ect s.

Message 1 on *Petition: Room Descriptions (#7976):

Dat e: Thu Dec 11 21:49:23 1997 PST
From Ni ght Angel (#90845)
To: *Petition: RoomDescriptions (#7976)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 307

You know soneone's going to ask it, so it mght as well be nme: How do
you know whi ch roons are "public"?

Message 2 on *Petition: Room Descriptions (#7976):

Dat e: Thu Dec 11 21:50:22 1997 PST
From Gear (#104262)
To: *Petition: Room Descriptions (#7976)

How exactly will this command nodify the description of the roons?

Message 3 on *Petition: Room Descriptions (#7976):

Dat e: Thu Dec 11 21:59:18 1997 PST
From creeper (#106368)
To: Ni ght Angel (#90845) and *Petition: Room Descriptions (#7976)

> You know soneone's going to ask it, so it mght as well be me: How
> do you know which roons are "public"?

The ones which are "navigable", |ike #17, or the dining, or the garage,
and so on. Basically any room which is not hidden or private (like ny
own roons, for exanple). | think that anyone shoul d design by their own

words the new | anbdahouse.

Message 4 on *Petition: Room Descriptions (#7976):

Dat e: Thu Dec 11 22:01:13 1997 PST
From creeper (#106368)
To: Cear (#104262) and *Petition: Room Descriptions (#7976)

>How exactly will this command nodify the description of the roons?

I'd say that it works |ike @escribe, only it affect another property
whi ch coud be called by :1ook_self. So the main info, |ike specia
instructions, or exits, can be maintained, and only the "design" would
be changed.

Message 5 on *Petition: Room Descriptions (#7976):

Dat e: Sat Dec 13 05:13:01 1997 PST
From Yi b (#58337)
To: *Petition: Room Descriptions (#7976)

Subj ect: Everybody plays

So the database woul d potentially have to store as many living room
descriptions as players who use it, the dining roomwould potentially
have to store as many di ning room descriptions as players who use it,
the driveway would potentially have to store as nmany driveway
descriptions as players who use it, and The Sex Room woul dn't, because
it's not wal kably connected (or maybe it is, and then there's nore

bl oat) .

| don't think the database could support it. O maybe | m sunderstand
what this petition is getting at?

Message 6 on *Petition: Room Descriptions (#7976):
Dat e: Sat Dec 13 10:57:26 1997 PST

© Anna Cicognani, September 1998, PhD Thesis, Appendices 308

From Gary (#110811)
To: *Petition: RoomDescriptions (#7976)
Subject: Interpreting the Petition

The petition now says:

> Regi stered users should be able to nodify the room descriptions of
public spaces.

> Using the @escribe command, is the only way of designing, and it
shoul d be possible to allow MXers to redesign areas of the house, not
just roons they own.

> | propose the inplenentation of a conmand (@ketch, or @lesign) which
allows users to nodify the description of a room w thout changi ng any
substantial information, such as the exits, or the objects contained or
any other instruction related to the space.

> All that information can be contained in a separate property (and
recall ed by :1ook_self).

Uhh, it sounds to ne |ike the petitioner wants to nmake the .description
property on 'public' roonms witeable by any non-guests, |eaving such
things as contents and exits unchanged of course.

Yib reads it to nean that each non-guest could create a different room
desc that they alone see. That's actually sonething that could be
acconplished to sone extent by naking a player class that had its own

| ook verb and al |l owed each player to save a personal desc for *any*
roons. That would al so put the quota burden on the individual players
who want this feature. Hmm | guess it couldn't change the desc that
scrolls up when you first enter the roomthough. Anyway, while
think | agree with Yib that this doesn't sound |ike such a good idea,
at least the player class approach would be better than just letting
any schnmuck rewite the Living Roomdesc. Gawd, | can see 'LR Desc
Wars' woul d be next.

It's an interesting idea though, creeper. No personal criticismis
i ntended by me. Keep on witing.

Message 7 on *Petition: Room Descriptions (#7976):

Dat e: Sat Dec 13 17:29:15 1997 PST
From Yi b (#58337)
To: *Petition: Room Descriptions (#7976)

You wanna redecorate a quote-public-thing-unquote? Reupholster the
couch!)

Message 8 on *Petition: Room Descriptions (#7976):

Dat e: Sun Dec 14 17:55:22 1997 PST
From creeper (#106368)
To: *Petition: Room Descriptions (#7976)

Subject: Re: Interpreting the Petition

Unhh, it sounds to ne like the petitioner wants to nmake the
.description property on 'public' roonms witeable by any

non- guests, |eaving such things as contents and exits unchanged of
cour se.

V V V V

Not the .description, but another property called by | ook_self.

The .description should contain sonme info regarding the room
(unchangeabl), such as exits, other directions, particular
i nstructions.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 309

| didn't suggest that a room should have as many descriptions as

pl ayers (or nearly), but that each player should be able to change it.
Maybe creating a new player class "designer" is a good idea.

Changi ng the description only for a single player (say, | will have a
creeper's description of #17), is not a good idea, for a lot of

i nteracti on between players happens thanks to the room description (so
all the people in the roomshould see the same thing).

| see that it's difficult to handle the 'creativity' of everybody, for
they would like to rewite the description lots of tinmes, and maybe in
a non acceptabl e way.. .

So, as | see it, a new class of players, designers, can allow people to
re-desi gn desi gnabl e roons.....

We coul d have rooms whi ch are designable, and only designers can design
them and other roonms which are not. So, we would create a new cl ass of
roons, and a new class of players. And, ultinmately, a set of verbs for
desi gn.

Brai nstorm ng conti nues.

Message 9 on *Petition: Room Descriptions (#7976):

Dat e: Sun Dec 14 20:19:25 1997 PST
From Gear (#104262)
To: *Petition: Room Descriptions (#7976)

Subj ect: New Text

Wbul d this new version of the petition affect public roons? |f not,
why does it need a petition? And if it does, how do you determ ne who
gets to be a designer? A test of creativity? An oath to only nake
thenely designs? This new version is better, but still needs sone

wor K.

Message 10 on *Petition: Room Descriptions (#7976):

Dat e: Mon Dec 15 01:40: 27 1997 PST
From creeper (#106368)
To: *Petition: RoomDescriptions (#7976)

Subj ect: Re: New Text
> Wuld this new version of the petition affect public roonms? |If
It would affect public roons.

> not, why does it need a petition? And if it does, how do you
> determ ne who gets to be a designer? A test of creativity? An

The cl ass of player should be free (anybody can change to it), but
public roonms would need to carry a new prop (the one which is
changeabl e) .

| agree that | need some nore understandi ng of how who/ wher e/ what .

As | see it now

- players who are designers (who belong to the player class designer)
can change a property in all roons (unless anti-designer flag is set),
and certainly in all the public roons, ie all the ones which are able
to be accessed sinply wal ki ng around t he house.

- roons can either be designable (all the public, and whoever chooses
to make one's own), or not

© Anna Cicognani, September 1998, PhD Thesis, Appendices 310

- a property .design (or simlia) would store the info given by
desi gners

That's mne, so far...

Message 11 on *Petition: Room Descriptions (#7976):

Dat e: Tue Dec 16 18:54:20 1997 PST
From Pug (#92528)
To: *Petition: Room Descriptions (#7976)

Subj ect: Question

| have a few questions: Wen sonmeone makes a nodification to a room
does it only affect the description given to them or to everyone el se?
If it was only to them | don't think you need a petition since the

i ndividual is affected, not the public. If it is for everyone to
see... then:

Who deci des who gets to be a designer? bviously you don't want 500
odd designers running around the place starting descriptionwars,
trashi ng the Lanbda house do we? It would be cool to have nore
interactivity, but it needs sonme careful planning and sone checks-and-
bal ances.

Unfortunately, with the apparent possibility for a 2-day old char to
becone a designer and pronptly paint the entire Living Room bl ack and
knock out the |ightbul bs doesn't paint a pretty picture, excuse the
terrible pun. It would be cool if themes of certain roons, including
public ones, were changed by 'in-house' artists, who are chosen by the
owners of the roons. For public roonms, if you wanted, you could hold a
direct election, or elect an interior design committee who would then
choose an artist. Just as inreal life, | suppose, except cheaper :)

Message 12 on *Petition: Room Descriptions (#7976):

Dat e: Thu Dec 18 16:52:50 1997 PST
From creeper (#106368)
To: Gary (#110811), *Petition: RoomDescriptions (#7976), GCear

(#104262), Pug (#92528), Brack (#90845), ConeBut Not Forgotten (#58337),
and annore (#112154)

Subj ect: Petition #7976

#7976 rewitten
I think we can do sonmething with it.
Thanx for ur interest.

Message 13 on *Petition: Room Descriptions (#7976):

Dat e: Fri Dec 19 07:07:40 1997 PST

From Daydr eamer (#91923)

To: *Petition: RoomDescriptions (#7976)

Actually, | like this idea... but not that everyone should be able to
change the roons. The roons should be stable... how about this..

Have "Designer" be an el ectabl e post, such as the Reapers. Elect five
or so, and give themrun of LanbdaHouse... they'll take care of |inking
in roons, maintaining descriptions, etc. As | see it, the current
problemis that LanbdaHouse has no one "owner" (or group of

mai nt ai ners) who works on |inking things up and naintai ni ng.

© Anna Cicognani, September 1998, PhD Thesis, Appendices 311

How woul d | define "LanbdaHouse"? Probably all the things that you can
wal k to, and are actually part of the "House" conplex... this includes
the #17 area, outside around the pool, the basenent/furnace room etc.
Not, for instance, The Looking G ass Bar, or anything not owned by one
of the original creators.

Any hel p here? :)

Message 14 on *Petition: Room Descriptions (#7976):

Dat e: Fri Dec 19 07:09:13 1997 PST
From Daydr eamer (#91923)
To: *Petition: Room Descriptions (#7976)

Revi sion to | ast post: Perhaps everything owned by Lanbda (#50))°?

Message 15 on *Petition: Room Descriptions (#7976):

Dat e: Mon Dec 22 11:56:57 1997 PST
From Brack (#90845)
To: *Petition: RoomDescriptions (#7976)

Even Lanbda hi nsel f?

Message 16 on *Petition: Room Descriptions (#7976):

Dat e: Mon Dec 22 12:01:28 1997 PST
From Daydr eamer (#91923)
To: *Petition: RoomDescriptions (#7976)

Ahem | neant everything in the HOUSE owned by Lanbda. It was just an
i dea, anyway. :P

Message 17 on *Petition: Room Descriptions (#7976):

Dat e: Mon Dec 22 14:11:55 1997 PST
From creeper (#106368)
To: *Petition: RoomDescriptions (#7976), *NewSoci al | ssues

(#17671), *projects (#44433), and *Research (#9420)
Subj ect: design in the house

Have "Designer" be an el ectabl e post, such as the Reapers. El ect
five or so, and give themrun of LanbdaHouse... they'|ll take care
of linking in roons, muintaining descriptions, etc. As | see it,
the current problemis that LanmbdaHouse has no one "owner" (or
group of maintai ners) who works on |inking things up and

mai nt ai ni ng.

V V.V V V V

yes, i agree in creating a 'design board and creating a design system
by which the noo designers take care of the house.

we woul dn't need to have any owner of the house to change the
descri ptions.

i reckon that the designers should take care of the public spaces,
defined as the "wal kabl e" ones.

i think that if #7976 passes, it'd create VERY interesting results.

Message 18 on *Petition: Room Descriptions (#7976):
Dat e: Mon Dec 22 16:01:42 1997 PST

© Anna Cicognani, September 1998, PhD Thesis, Appendices 312

From *Petition: RoomDescriptions (#7976)

To: *W zar d- Li st (#6428), creeper (#106368), and
*Petition: RoomDescriptions (#7976)

Subj ect: Request for vetting

Repl y-to: creeper (#106368), *W zard-List (#6428), and
*Petition: RoomDescriptions (#7976)

Sender : Petitioner (#4)

creeper, the author of Petition: RoomDescriptions (#7976):
“RoonDescriptions', has acquired 10 signatures on his/her petition and
is submitting it to you, the wi zards, for vetting. Please |ook it over
and either

1) type " approve #7976' to grant it your mark of approva

or 2) type “deny #7976' to refuse such approval and then send mail to
*Petition: RoomDescriptions explaining your reasons for doing so.

Thank you for your attention to this nmatter

© Anna Cicognani, September 1998, PhD Thesis, Appendices 313

APPENDIX G. Linksto Electronic Sites

Papers

Cherny, Lynn. (1995a) The Modal Complexity of Speech Eventsin a Social MUD.
(http://www.research.att.com/~cherny/ejc.txt)

Cherny, Lynn. (1995b) The MUD Register: Conversational Models of Action in a Text-
Based Virtual Reality. PhD Dissertation, Stanford University.
(http://www.research.att.com/~cherny/diss-overview.html)

Cicognani, Anna. (1996) “Which language for Cyberspace? (poster).”
(http://www.arch.usyd.edu.au/~anna/images/CV Eposter.j pg)

Cicognani, Anna. Ed. (1997) Creative Collaboration in Virtual Communities (VC97)
(http://www.arch.usyd.edu.au/kcdc/conferences/V C97/)

Cicognani, Anna. (1998) “On the linguistic nature of Cyberspace and Virtua
Communities.” (http://www.arch.usyd.edu.au/~anna/papers/language. pdf)

Cicognani, Anna and Maher, Mary Lou. (1997) “Models of Collaboration for Designers
in a Computer-Supported Environment.”
(http://www.arch.usyd.edu.au/~annal/papers/ifip97a.html)

Clarke-Willson, Stephen. (1998) Applying Game Design to Virtual Environments.
(http://www.gamasutra.com/features/game_design/980101/virtual_environmentsl.htm)

Curtis, Pavel. (1992) On to the next stage...
(http://vesta.physics.ucls.edu/~smolin/lambda/laws_and_history/newdirection)

Curtis, Pavel. (1996) LambdaMOO Programmer's Manual. For LambdaMOO Version
1.8.0p5. (ftp://dulles.placeware.com/pub/M OO/ProgrammersManual.html)

Curtis, Pavel and Nichols, David A. (1993) MUDs grow up: Social Virtual Reality in the
Real World. (ftp://parcftp.xerox.com/pub/M OO/papers'M UDsGrowUp.txt)

Danet, Brenda. Ed. (1995) Play and Performance in Computer-Mediated Communication.
(http://www.ascusc.org/jcmc/vol 1/issue2/tocon.html)

Davis, Stephen Boyd, Huxor, Avon and L ansdown, John. (1996) The Design of Virtual
Environments, with particular reference to VRML.
(http://www.man.ac.uk/MV C/SIMA/vrml_design/title.ntml)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 314

Dibbell, Julian. (1993) “Rape in Cyberspace or how an evil clown, a haitian trickster spirit,
two wizards, and a cast of dozens turned a database into a society.”
(ftp://dulles.placeware.com/pub/M OO/papers/VillageV oice.txt)

Fernback, Jan and Thompson, Brad. (1995) Virtual Communities: Abort, Retry, Failure?
(http://www.well.com/user/hlr/texts/V Ccivil .html)

Gay, Geri and Lentini, Marc. (1995) “Use of Communication Resources in a Networked
Collaborative Design Environment.”
(http://www.ascusc.org/jcmc/vol Vissuel/IMG_JCM C/ResourceUse.html)

Gero, John S. (1990) “Design prototypes. a knowledge representation schema for design.”
(http://www.arch.usyd.edu.au/~john/publications/ger-prototy pes/ger-aimag.html)

Hill, Belinda. (1996) Voices from Cyberspace: the Metaphors of Electronic
Communication. (http://weber.u.washington.edu/~belinda/voices.html)

JCMC. (1996) Journal of Computer-Mediated Communication.
(http://shum.cc.huji.ac.il/jcmc/jeme.html)

Kolko, Beth E. (1995) “Building a World with Words: The Narrative Reality of Virtua
Communities.” (http://acorn.grove.iup.edu/en/workdays/Kolko.html)

Kollock, Peter and Smith, Marc. (1994) “Managing the Virtual Commons:
Cooperation and Conflict in Computer Communities.”
(http://netscan.sscnet.ucla.edu/csoc/ papers/virtcomm/vcommons.htm)

Kvan, Thomas. (1994) “Reflections on computer-mediated architectural design.”
(http://arch.hku.hk:80/peopl e/tkvan/acm-94.html)

Lombard, Matthew and Ditton, Theresa. (1997) At the Heart of It All: The Concept of
Presence. (http://www.ascusc.org/jcmc/vol 3/issue2/lombard.html)

Maher, Mary Lou, Cicoghani, Anna and Simoff, Simeon. (1996) “An experimental
study of computer-mediated collaborative design.”
(http://www.arch.usyd.edu.au/kcdc/cmed/paper/)

Maher, Mary Lou, Simoff, Simeon and Cicognani, Anna. (1997) “Observations from an
Experimental Study of Computer-Mediated Collaborative Design.”
(http://www.arch.usyd.edu.au/kedc/cmed/paper/ifip97b. pdf)

M cCarthy, John. (1996) Elephant 2000: A Programming Language Based on Speech Acts.
(http://www-formal .stanford.edu/jmc/el ephant/el ephant.html)

Mitchell, William. (1995a) Commentary.
(http://www.feedmag.com/95.08dial 0g/95.08mit2.html)

© Anna Cicognani, September 1998, PhD Thesis, Appendices 315

Mnookin, Jennifer. (1996) “Virtual(ly) Law: The Emergence of Law in LambdaM OO.”
(http://www.ascusc.org/jcmc/vol 2/issuel/lambda.html)

Mynatt, Elizabeth D. et al. (1997) “Design for Network Communities.”
(http://www.acm.org/isgchi/chi97/proceedings/edm.htm)

Paccagnella, L uciano. (1997) “Getting the Seats of your Pants Dirty: strategies for
Ethnographic Research on Virtual Communities.”
(http://www.ascusc.org/jcmc/vol 3/issuel/paccagnel la.html)

Reid, Elizabeth. (1994) Cultural Formations in Text-Based Virtual Realities.
(http://people.we.mediaone.net/elizrs/work.html)

Reid, Elizabeth M. (1991) Electropolis. Communication and Community on Internet Relay
Chat. (http://people.we.mediaone.net/elizrs/work.html)

Rohrer, Tim. (1997) Conceptual Blending on the Information Highway: How
Metaphorical Inferences Work.
(http://wwwdarkwing.uoregon.edu/~rohrer/iclacnf4.htm)

Self, John. (1995) Computational Mathetics: Towards a Science of Learning Systems
Design. (http://www.cbl.leeds.ac.uk/~jas/cm.html)

Stivale, Charles J. (1995) help manners: Frontier Tales of Two MOOs.

(http://wwwpub.utdallas.edu/~cynthiah/lingua_archive/help_manners.html)

Other links:
The B-Org: http://www.the-b.org

Dictionary of Linguistics: http://wwwots.|et.run.nl/~Hans.Leidekker/lexicon
GNA forum: http://admin.gnacademy.org:8001/uu-gna/text/moo/forum.htm

Humber Humbert’'s LambdaM OO Archive:
http://vesta.physi cs.ucla.edu/~smolin/lambda/

ThelLost Library of MOOs: http://lucien.sims.berkeley.edu/moo.html
MOO-Cows FAQ Archive: http://www.moo.mud.org/moo-fag/
MOO Stats: http://lightsphere.com/moo/stats.html

MOO-WWW research directory: http://www.maths.tcd.ie/pub/mud/moo-
www/rdir/rd.html

A MUD Workshop: http://klio.tema.liu.se/MUDworkshop
Various paperson MUDs and MOOs: http://sunsite.unc.edu/dbarberi/papers/

© Anna Cicognani, September 1998, PhD Thesis, Appendices 316

